PullupDev/lib/mavlink/common/mavlink_msg_optical_flow.h

389 lines
18 KiB
C
Raw Normal View History

#pragma once
// MESSAGE OPTICAL_FLOW PACKING
#define MAVLINK_MSG_ID_OPTICAL_FLOW 100
MAVPACKED(
typedef struct __mavlink_optical_flow_t {
uint64_t time_usec; /*< [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.*/
float flow_comp_m_x; /*< [m/s] Flow in x-sensor direction, angular-speed compensated*/
float flow_comp_m_y; /*< [m/s] Flow in y-sensor direction, angular-speed compensated*/
float ground_distance; /*< [m] Ground distance. Positive value: distance known. Negative value: Unknown distance*/
int16_t flow_x; /*< [dpix] Flow in x-sensor direction*/
int16_t flow_y; /*< [dpix] Flow in y-sensor direction*/
uint8_t sensor_id; /*< Sensor ID*/
uint8_t quality; /*< Optical flow quality / confidence. 0: bad, 255: maximum quality*/
}) mavlink_optical_flow_t;
#define MAVLINK_MSG_ID_OPTICAL_FLOW_LEN 26
#define MAVLINK_MSG_ID_OPTICAL_FLOW_MIN_LEN 26
#define MAVLINK_MSG_ID_100_LEN 26
#define MAVLINK_MSG_ID_100_MIN_LEN 26
#define MAVLINK_MSG_ID_OPTICAL_FLOW_CRC 175
#define MAVLINK_MSG_ID_100_CRC 175
#if MAVLINK_COMMAND_24BIT
#define MAVLINK_MESSAGE_INFO_OPTICAL_FLOW { \
100, \
"OPTICAL_FLOW", \
8, \
{ { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_optical_flow_t, time_usec) }, \
{ "sensor_id", NULL, MAVLINK_TYPE_UINT8_T, 0, 24, offsetof(mavlink_optical_flow_t, sensor_id) }, \
{ "flow_x", NULL, MAVLINK_TYPE_INT16_T, 0, 20, offsetof(mavlink_optical_flow_t, flow_x) }, \
{ "flow_y", NULL, MAVLINK_TYPE_INT16_T, 0, 22, offsetof(mavlink_optical_flow_t, flow_y) }, \
{ "flow_comp_m_x", NULL, MAVLINK_TYPE_FLOAT, 0, 8, offsetof(mavlink_optical_flow_t, flow_comp_m_x) }, \
{ "flow_comp_m_y", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_optical_flow_t, flow_comp_m_y) }, \
{ "quality", NULL, MAVLINK_TYPE_UINT8_T, 0, 25, offsetof(mavlink_optical_flow_t, quality) }, \
{ "ground_distance", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_optical_flow_t, ground_distance) }, \
} \
}
#else
#define MAVLINK_MESSAGE_INFO_OPTICAL_FLOW { \
"OPTICAL_FLOW", \
8, \
{ { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_optical_flow_t, time_usec) }, \
{ "sensor_id", NULL, MAVLINK_TYPE_UINT8_T, 0, 24, offsetof(mavlink_optical_flow_t, sensor_id) }, \
{ "flow_x", NULL, MAVLINK_TYPE_INT16_T, 0, 20, offsetof(mavlink_optical_flow_t, flow_x) }, \
{ "flow_y", NULL, MAVLINK_TYPE_INT16_T, 0, 22, offsetof(mavlink_optical_flow_t, flow_y) }, \
{ "flow_comp_m_x", NULL, MAVLINK_TYPE_FLOAT, 0, 8, offsetof(mavlink_optical_flow_t, flow_comp_m_x) }, \
{ "flow_comp_m_y", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_optical_flow_t, flow_comp_m_y) }, \
{ "quality", NULL, MAVLINK_TYPE_UINT8_T, 0, 25, offsetof(mavlink_optical_flow_t, quality) }, \
{ "ground_distance", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_optical_flow_t, ground_distance) }, \
} \
}
#endif
/**
* @brief Pack a optical_flow message
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param msg The MAVLink message to compress the data into
*
* @param time_usec [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.
* @param sensor_id Sensor ID
* @param flow_x [dpix] Flow in x-sensor direction
* @param flow_y [dpix] Flow in y-sensor direction
* @param flow_comp_m_x [m/s] Flow in x-sensor direction, angular-speed compensated
* @param flow_comp_m_y [m/s] Flow in y-sensor direction, angular-speed compensated
* @param quality Optical flow quality / confidence. 0: bad, 255: maximum quality
* @param ground_distance [m] Ground distance. Positive value: distance known. Negative value: Unknown distance
* @return length of the message in bytes (excluding serial stream start sign)
*/
static inline uint16_t mavlink_msg_optical_flow_pack(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg,
uint64_t time_usec, uint8_t sensor_id, int16_t flow_x, int16_t flow_y, float flow_comp_m_x, float flow_comp_m_y, uint8_t quality, float ground_distance)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_LEN];
_mav_put_uint64_t(buf, 0, time_usec);
_mav_put_float(buf, 8, flow_comp_m_x);
_mav_put_float(buf, 12, flow_comp_m_y);
_mav_put_float(buf, 16, ground_distance);
_mav_put_int16_t(buf, 20, flow_x);
_mav_put_int16_t(buf, 22, flow_y);
_mav_put_uint8_t(buf, 24, sensor_id);
_mav_put_uint8_t(buf, 25, quality);
memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN);
#else
mavlink_optical_flow_t packet;
packet.time_usec = time_usec;
packet.flow_comp_m_x = flow_comp_m_x;
packet.flow_comp_m_y = flow_comp_m_y;
packet.ground_distance = ground_distance;
packet.flow_x = flow_x;
packet.flow_y = flow_y;
packet.sensor_id = sensor_id;
packet.quality = quality;
memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN);
#endif
msg->msgid = MAVLINK_MSG_ID_OPTICAL_FLOW;
return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_CRC);
}
/**
* @brief Pack a optical_flow message on a channel
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param chan The MAVLink channel this message will be sent over
* @param msg The MAVLink message to compress the data into
* @param time_usec [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.
* @param sensor_id Sensor ID
* @param flow_x [dpix] Flow in x-sensor direction
* @param flow_y [dpix] Flow in y-sensor direction
* @param flow_comp_m_x [m/s] Flow in x-sensor direction, angular-speed compensated
* @param flow_comp_m_y [m/s] Flow in y-sensor direction, angular-speed compensated
* @param quality Optical flow quality / confidence. 0: bad, 255: maximum quality
* @param ground_distance [m] Ground distance. Positive value: distance known. Negative value: Unknown distance
* @return length of the message in bytes (excluding serial stream start sign)
*/
static inline uint16_t mavlink_msg_optical_flow_pack_chan(uint8_t system_id, uint8_t component_id, uint8_t chan,
mavlink_message_t* msg,
uint64_t time_usec,uint8_t sensor_id,int16_t flow_x,int16_t flow_y,float flow_comp_m_x,float flow_comp_m_y,uint8_t quality,float ground_distance)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_LEN];
_mav_put_uint64_t(buf, 0, time_usec);
_mav_put_float(buf, 8, flow_comp_m_x);
_mav_put_float(buf, 12, flow_comp_m_y);
_mav_put_float(buf, 16, ground_distance);
_mav_put_int16_t(buf, 20, flow_x);
_mav_put_int16_t(buf, 22, flow_y);
_mav_put_uint8_t(buf, 24, sensor_id);
_mav_put_uint8_t(buf, 25, quality);
memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN);
#else
mavlink_optical_flow_t packet;
packet.time_usec = time_usec;
packet.flow_comp_m_x = flow_comp_m_x;
packet.flow_comp_m_y = flow_comp_m_y;
packet.ground_distance = ground_distance;
packet.flow_x = flow_x;
packet.flow_y = flow_y;
packet.sensor_id = sensor_id;
packet.quality = quality;
memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN);
#endif
msg->msgid = MAVLINK_MSG_ID_OPTICAL_FLOW;
return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_CRC);
}
/**
* @brief Encode a optical_flow struct
*
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param msg The MAVLink message to compress the data into
* @param optical_flow C-struct to read the message contents from
*/
static inline uint16_t mavlink_msg_optical_flow_encode(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, const mavlink_optical_flow_t* optical_flow)
{
return mavlink_msg_optical_flow_pack(system_id, component_id, msg, optical_flow->time_usec, optical_flow->sensor_id, optical_flow->flow_x, optical_flow->flow_y, optical_flow->flow_comp_m_x, optical_flow->flow_comp_m_y, optical_flow->quality, optical_flow->ground_distance);
}
/**
* @brief Encode a optical_flow struct on a channel
*
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param chan The MAVLink channel this message will be sent over
* @param msg The MAVLink message to compress the data into
* @param optical_flow C-struct to read the message contents from
*/
static inline uint16_t mavlink_msg_optical_flow_encode_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, const mavlink_optical_flow_t* optical_flow)
{
return mavlink_msg_optical_flow_pack_chan(system_id, component_id, chan, msg, optical_flow->time_usec, optical_flow->sensor_id, optical_flow->flow_x, optical_flow->flow_y, optical_flow->flow_comp_m_x, optical_flow->flow_comp_m_y, optical_flow->quality, optical_flow->ground_distance);
}
/**
* @brief Send a optical_flow message
* @param chan MAVLink channel to send the message
*
* @param time_usec [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.
* @param sensor_id Sensor ID
* @param flow_x [dpix] Flow in x-sensor direction
* @param flow_y [dpix] Flow in y-sensor direction
* @param flow_comp_m_x [m/s] Flow in x-sensor direction, angular-speed compensated
* @param flow_comp_m_y [m/s] Flow in y-sensor direction, angular-speed compensated
* @param quality Optical flow quality / confidence. 0: bad, 255: maximum quality
* @param ground_distance [m] Ground distance. Positive value: distance known. Negative value: Unknown distance
*/
#ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS
static inline void mavlink_msg_optical_flow_send(mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_id, int16_t flow_x, int16_t flow_y, float flow_comp_m_x, float flow_comp_m_y, uint8_t quality, float ground_distance)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_LEN];
_mav_put_uint64_t(buf, 0, time_usec);
_mav_put_float(buf, 8, flow_comp_m_x);
_mav_put_float(buf, 12, flow_comp_m_y);
_mav_put_float(buf, 16, ground_distance);
_mav_put_int16_t(buf, 20, flow_x);
_mav_put_int16_t(buf, 22, flow_y);
_mav_put_uint8_t(buf, 24, sensor_id);
_mav_put_uint8_t(buf, 25, quality);
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_CRC);
#else
mavlink_optical_flow_t packet;
packet.time_usec = time_usec;
packet.flow_comp_m_x = flow_comp_m_x;
packet.flow_comp_m_y = flow_comp_m_y;
packet.ground_distance = ground_distance;
packet.flow_x = flow_x;
packet.flow_y = flow_y;
packet.sensor_id = sensor_id;
packet.quality = quality;
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW, (const char *)&packet, MAVLINK_MSG_ID_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_CRC);
#endif
}
/**
* @brief Send a optical_flow message
* @param chan MAVLink channel to send the message
* @param struct The MAVLink struct to serialize
*/
static inline void mavlink_msg_optical_flow_send_struct(mavlink_channel_t chan, const mavlink_optical_flow_t* optical_flow)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
mavlink_msg_optical_flow_send(chan, optical_flow->time_usec, optical_flow->sensor_id, optical_flow->flow_x, optical_flow->flow_y, optical_flow->flow_comp_m_x, optical_flow->flow_comp_m_y, optical_flow->quality, optical_flow->ground_distance);
#else
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW, (const char *)optical_flow, MAVLINK_MSG_ID_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_CRC);
#endif
}
#if MAVLINK_MSG_ID_OPTICAL_FLOW_LEN <= MAVLINK_MAX_PAYLOAD_LEN
/*
This varient of _send() can be used to save stack space by re-using
memory from the receive buffer. The caller provides a
mavlink_message_t which is the size of a full mavlink message. This
is usually the receive buffer for the channel, and allows a reply to an
incoming message with minimum stack space usage.
*/
static inline void mavlink_msg_optical_flow_send_buf(mavlink_message_t *msgbuf, mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_id, int16_t flow_x, int16_t flow_y, float flow_comp_m_x, float flow_comp_m_y, uint8_t quality, float ground_distance)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char *buf = (char *)msgbuf;
_mav_put_uint64_t(buf, 0, time_usec);
_mav_put_float(buf, 8, flow_comp_m_x);
_mav_put_float(buf, 12, flow_comp_m_y);
_mav_put_float(buf, 16, ground_distance);
_mav_put_int16_t(buf, 20, flow_x);
_mav_put_int16_t(buf, 22, flow_y);
_mav_put_uint8_t(buf, 24, sensor_id);
_mav_put_uint8_t(buf, 25, quality);
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_CRC);
#else
mavlink_optical_flow_t *packet = (mavlink_optical_flow_t *)msgbuf;
packet->time_usec = time_usec;
packet->flow_comp_m_x = flow_comp_m_x;
packet->flow_comp_m_y = flow_comp_m_y;
packet->ground_distance = ground_distance;
packet->flow_x = flow_x;
packet->flow_y = flow_y;
packet->sensor_id = sensor_id;
packet->quality = quality;
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW, (const char *)packet, MAVLINK_MSG_ID_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_CRC);
#endif
}
#endif
#endif
// MESSAGE OPTICAL_FLOW UNPACKING
/**
* @brief Get field time_usec from optical_flow message
*
* @return [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.
*/
static inline uint64_t mavlink_msg_optical_flow_get_time_usec(const mavlink_message_t* msg)
{
return _MAV_RETURN_uint64_t(msg, 0);
}
/**
* @brief Get field sensor_id from optical_flow message
*
* @return Sensor ID
*/
static inline uint8_t mavlink_msg_optical_flow_get_sensor_id(const mavlink_message_t* msg)
{
return _MAV_RETURN_uint8_t(msg, 24);
}
/**
* @brief Get field flow_x from optical_flow message
*
* @return [dpix] Flow in x-sensor direction
*/
static inline int16_t mavlink_msg_optical_flow_get_flow_x(const mavlink_message_t* msg)
{
return _MAV_RETURN_int16_t(msg, 20);
}
/**
* @brief Get field flow_y from optical_flow message
*
* @return [dpix] Flow in y-sensor direction
*/
static inline int16_t mavlink_msg_optical_flow_get_flow_y(const mavlink_message_t* msg)
{
return _MAV_RETURN_int16_t(msg, 22);
}
/**
* @brief Get field flow_comp_m_x from optical_flow message
*
* @return [m/s] Flow in x-sensor direction, angular-speed compensated
*/
static inline float mavlink_msg_optical_flow_get_flow_comp_m_x(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 8);
}
/**
* @brief Get field flow_comp_m_y from optical_flow message
*
* @return [m/s] Flow in y-sensor direction, angular-speed compensated
*/
static inline float mavlink_msg_optical_flow_get_flow_comp_m_y(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 12);
}
/**
* @brief Get field quality from optical_flow message
*
* @return Optical flow quality / confidence. 0: bad, 255: maximum quality
*/
static inline uint8_t mavlink_msg_optical_flow_get_quality(const mavlink_message_t* msg)
{
return _MAV_RETURN_uint8_t(msg, 25);
}
/**
* @brief Get field ground_distance from optical_flow message
*
* @return [m] Ground distance. Positive value: distance known. Negative value: Unknown distance
*/
static inline float mavlink_msg_optical_flow_get_ground_distance(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 16);
}
/**
* @brief Decode a optical_flow message into a struct
*
* @param msg The message to decode
* @param optical_flow C-struct to decode the message contents into
*/
static inline void mavlink_msg_optical_flow_decode(const mavlink_message_t* msg, mavlink_optical_flow_t* optical_flow)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
optical_flow->time_usec = mavlink_msg_optical_flow_get_time_usec(msg);
optical_flow->flow_comp_m_x = mavlink_msg_optical_flow_get_flow_comp_m_x(msg);
optical_flow->flow_comp_m_y = mavlink_msg_optical_flow_get_flow_comp_m_y(msg);
optical_flow->ground_distance = mavlink_msg_optical_flow_get_ground_distance(msg);
optical_flow->flow_x = mavlink_msg_optical_flow_get_flow_x(msg);
optical_flow->flow_y = mavlink_msg_optical_flow_get_flow_y(msg);
optical_flow->sensor_id = mavlink_msg_optical_flow_get_sensor_id(msg);
optical_flow->quality = mavlink_msg_optical_flow_get_quality(msg);
#else
uint8_t len = msg->len < MAVLINK_MSG_ID_OPTICAL_FLOW_LEN? msg->len : MAVLINK_MSG_ID_OPTICAL_FLOW_LEN;
memset(optical_flow, 0, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN);
memcpy(optical_flow, _MAV_PAYLOAD(msg), len);
#endif
}