PullupDev/lib/mavlink/common/mavlink_msg_global_position_int_cov.h
tk 1dff1bfd33 【类 型】:fix 更新mavlink库
【原  因】:更全更新
【过  程】:
【影  响】:

# 类型 包含:
# feat:新功能(feature)
# fix:修补bug
# docs:文档(documentation)
# style: 格式(不影响代码运行的变动)
# refactor:重构(即不是新增功能,也不是修改bug的代码变动)
# test:增加测试
# chore:构建过程或辅助工具的变动
2024-08-19 16:16:39 +08:00

431 lines
22 KiB
C

#pragma once
// MESSAGE GLOBAL_POSITION_INT_COV PACKING
#define MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV 63
MAVPACKED(
typedef struct __mavlink_global_position_int_cov_t {
uint64_t time_usec; /*< [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.*/
int32_t lat; /*< [degE7] Latitude*/
int32_t lon; /*< [degE7] Longitude*/
int32_t alt; /*< [mm] Altitude in meters above MSL*/
int32_t relative_alt; /*< [mm] Altitude above ground*/
float vx; /*< [m/s] Ground X Speed (Latitude)*/
float vy; /*< [m/s] Ground Y Speed (Longitude)*/
float vz; /*< [m/s] Ground Z Speed (Altitude)*/
float covariance[36]; /*< Row-major representation of a 6x6 position and velocity 6x6 cross-covariance matrix (states: lat, lon, alt, vx, vy, vz; first six entries are the first ROW, next six entries are the second row, etc.). If unknown, assign NaN value to first element in the array.*/
uint8_t estimator_type; /*< Class id of the estimator this estimate originated from.*/
}) mavlink_global_position_int_cov_t;
#define MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN 181
#define MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_MIN_LEN 181
#define MAVLINK_MSG_ID_63_LEN 181
#define MAVLINK_MSG_ID_63_MIN_LEN 181
#define MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_CRC 119
#define MAVLINK_MSG_ID_63_CRC 119
#define MAVLINK_MSG_GLOBAL_POSITION_INT_COV_FIELD_COVARIANCE_LEN 36
#if MAVLINK_COMMAND_24BIT
#define MAVLINK_MESSAGE_INFO_GLOBAL_POSITION_INT_COV { \
63, \
"GLOBAL_POSITION_INT_COV", \
10, \
{ { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_global_position_int_cov_t, time_usec) }, \
{ "estimator_type", NULL, MAVLINK_TYPE_UINT8_T, 0, 180, offsetof(mavlink_global_position_int_cov_t, estimator_type) }, \
{ "lat", NULL, MAVLINK_TYPE_INT32_T, 0, 8, offsetof(mavlink_global_position_int_cov_t, lat) }, \
{ "lon", NULL, MAVLINK_TYPE_INT32_T, 0, 12, offsetof(mavlink_global_position_int_cov_t, lon) }, \
{ "alt", NULL, MAVLINK_TYPE_INT32_T, 0, 16, offsetof(mavlink_global_position_int_cov_t, alt) }, \
{ "relative_alt", NULL, MAVLINK_TYPE_INT32_T, 0, 20, offsetof(mavlink_global_position_int_cov_t, relative_alt) }, \
{ "vx", NULL, MAVLINK_TYPE_FLOAT, 0, 24, offsetof(mavlink_global_position_int_cov_t, vx) }, \
{ "vy", NULL, MAVLINK_TYPE_FLOAT, 0, 28, offsetof(mavlink_global_position_int_cov_t, vy) }, \
{ "vz", NULL, MAVLINK_TYPE_FLOAT, 0, 32, offsetof(mavlink_global_position_int_cov_t, vz) }, \
{ "covariance", NULL, MAVLINK_TYPE_FLOAT, 36, 36, offsetof(mavlink_global_position_int_cov_t, covariance) }, \
} \
}
#else
#define MAVLINK_MESSAGE_INFO_GLOBAL_POSITION_INT_COV { \
"GLOBAL_POSITION_INT_COV", \
10, \
{ { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_global_position_int_cov_t, time_usec) }, \
{ "estimator_type", NULL, MAVLINK_TYPE_UINT8_T, 0, 180, offsetof(mavlink_global_position_int_cov_t, estimator_type) }, \
{ "lat", NULL, MAVLINK_TYPE_INT32_T, 0, 8, offsetof(mavlink_global_position_int_cov_t, lat) }, \
{ "lon", NULL, MAVLINK_TYPE_INT32_T, 0, 12, offsetof(mavlink_global_position_int_cov_t, lon) }, \
{ "alt", NULL, MAVLINK_TYPE_INT32_T, 0, 16, offsetof(mavlink_global_position_int_cov_t, alt) }, \
{ "relative_alt", NULL, MAVLINK_TYPE_INT32_T, 0, 20, offsetof(mavlink_global_position_int_cov_t, relative_alt) }, \
{ "vx", NULL, MAVLINK_TYPE_FLOAT, 0, 24, offsetof(mavlink_global_position_int_cov_t, vx) }, \
{ "vy", NULL, MAVLINK_TYPE_FLOAT, 0, 28, offsetof(mavlink_global_position_int_cov_t, vy) }, \
{ "vz", NULL, MAVLINK_TYPE_FLOAT, 0, 32, offsetof(mavlink_global_position_int_cov_t, vz) }, \
{ "covariance", NULL, MAVLINK_TYPE_FLOAT, 36, 36, offsetof(mavlink_global_position_int_cov_t, covariance) }, \
} \
}
#endif
/**
* @brief Pack a global_position_int_cov message
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param msg The MAVLink message to compress the data into
*
* @param time_usec [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.
* @param estimator_type Class id of the estimator this estimate originated from.
* @param lat [degE7] Latitude
* @param lon [degE7] Longitude
* @param alt [mm] Altitude in meters above MSL
* @param relative_alt [mm] Altitude above ground
* @param vx [m/s] Ground X Speed (Latitude)
* @param vy [m/s] Ground Y Speed (Longitude)
* @param vz [m/s] Ground Z Speed (Altitude)
* @param covariance Row-major representation of a 6x6 position and velocity 6x6 cross-covariance matrix (states: lat, lon, alt, vx, vy, vz; first six entries are the first ROW, next six entries are the second row, etc.). If unknown, assign NaN value to first element in the array.
* @return length of the message in bytes (excluding serial stream start sign)
*/
static inline uint16_t mavlink_msg_global_position_int_cov_pack(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg,
uint64_t time_usec, uint8_t estimator_type, int32_t lat, int32_t lon, int32_t alt, int32_t relative_alt, float vx, float vy, float vz, const float *covariance)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char buf[MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN];
_mav_put_uint64_t(buf, 0, time_usec);
_mav_put_int32_t(buf, 8, lat);
_mav_put_int32_t(buf, 12, lon);
_mav_put_int32_t(buf, 16, alt);
_mav_put_int32_t(buf, 20, relative_alt);
_mav_put_float(buf, 24, vx);
_mav_put_float(buf, 28, vy);
_mav_put_float(buf, 32, vz);
_mav_put_uint8_t(buf, 180, estimator_type);
_mav_put_float_array(buf, 36, covariance, 36);
memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN);
#else
mavlink_global_position_int_cov_t packet;
packet.time_usec = time_usec;
packet.lat = lat;
packet.lon = lon;
packet.alt = alt;
packet.relative_alt = relative_alt;
packet.vx = vx;
packet.vy = vy;
packet.vz = vz;
packet.estimator_type = estimator_type;
mav_array_memcpy(packet.covariance, covariance, sizeof(float)*36);
memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN);
#endif
msg->msgid = MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV;
return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_MIN_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_CRC);
}
/**
* @brief Pack a global_position_int_cov message on a channel
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param chan The MAVLink channel this message will be sent over
* @param msg The MAVLink message to compress the data into
* @param time_usec [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.
* @param estimator_type Class id of the estimator this estimate originated from.
* @param lat [degE7] Latitude
* @param lon [degE7] Longitude
* @param alt [mm] Altitude in meters above MSL
* @param relative_alt [mm] Altitude above ground
* @param vx [m/s] Ground X Speed (Latitude)
* @param vy [m/s] Ground Y Speed (Longitude)
* @param vz [m/s] Ground Z Speed (Altitude)
* @param covariance Row-major representation of a 6x6 position and velocity 6x6 cross-covariance matrix (states: lat, lon, alt, vx, vy, vz; first six entries are the first ROW, next six entries are the second row, etc.). If unknown, assign NaN value to first element in the array.
* @return length of the message in bytes (excluding serial stream start sign)
*/
static inline uint16_t mavlink_msg_global_position_int_cov_pack_chan(uint8_t system_id, uint8_t component_id, uint8_t chan,
mavlink_message_t* msg,
uint64_t time_usec,uint8_t estimator_type,int32_t lat,int32_t lon,int32_t alt,int32_t relative_alt,float vx,float vy,float vz,const float *covariance)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char buf[MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN];
_mav_put_uint64_t(buf, 0, time_usec);
_mav_put_int32_t(buf, 8, lat);
_mav_put_int32_t(buf, 12, lon);
_mav_put_int32_t(buf, 16, alt);
_mav_put_int32_t(buf, 20, relative_alt);
_mav_put_float(buf, 24, vx);
_mav_put_float(buf, 28, vy);
_mav_put_float(buf, 32, vz);
_mav_put_uint8_t(buf, 180, estimator_type);
_mav_put_float_array(buf, 36, covariance, 36);
memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN);
#else
mavlink_global_position_int_cov_t packet;
packet.time_usec = time_usec;
packet.lat = lat;
packet.lon = lon;
packet.alt = alt;
packet.relative_alt = relative_alt;
packet.vx = vx;
packet.vy = vy;
packet.vz = vz;
packet.estimator_type = estimator_type;
mav_array_memcpy(packet.covariance, covariance, sizeof(float)*36);
memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN);
#endif
msg->msgid = MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV;
return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_MIN_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_CRC);
}
/**
* @brief Encode a global_position_int_cov struct
*
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param msg The MAVLink message to compress the data into
* @param global_position_int_cov C-struct to read the message contents from
*/
static inline uint16_t mavlink_msg_global_position_int_cov_encode(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, const mavlink_global_position_int_cov_t* global_position_int_cov)
{
return mavlink_msg_global_position_int_cov_pack(system_id, component_id, msg, global_position_int_cov->time_usec, global_position_int_cov->estimator_type, global_position_int_cov->lat, global_position_int_cov->lon, global_position_int_cov->alt, global_position_int_cov->relative_alt, global_position_int_cov->vx, global_position_int_cov->vy, global_position_int_cov->vz, global_position_int_cov->covariance);
}
/**
* @brief Encode a global_position_int_cov struct on a channel
*
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param chan The MAVLink channel this message will be sent over
* @param msg The MAVLink message to compress the data into
* @param global_position_int_cov C-struct to read the message contents from
*/
static inline uint16_t mavlink_msg_global_position_int_cov_encode_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, const mavlink_global_position_int_cov_t* global_position_int_cov)
{
return mavlink_msg_global_position_int_cov_pack_chan(system_id, component_id, chan, msg, global_position_int_cov->time_usec, global_position_int_cov->estimator_type, global_position_int_cov->lat, global_position_int_cov->lon, global_position_int_cov->alt, global_position_int_cov->relative_alt, global_position_int_cov->vx, global_position_int_cov->vy, global_position_int_cov->vz, global_position_int_cov->covariance);
}
/**
* @brief Send a global_position_int_cov message
* @param chan MAVLink channel to send the message
*
* @param time_usec [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.
* @param estimator_type Class id of the estimator this estimate originated from.
* @param lat [degE7] Latitude
* @param lon [degE7] Longitude
* @param alt [mm] Altitude in meters above MSL
* @param relative_alt [mm] Altitude above ground
* @param vx [m/s] Ground X Speed (Latitude)
* @param vy [m/s] Ground Y Speed (Longitude)
* @param vz [m/s] Ground Z Speed (Altitude)
* @param covariance Row-major representation of a 6x6 position and velocity 6x6 cross-covariance matrix (states: lat, lon, alt, vx, vy, vz; first six entries are the first ROW, next six entries are the second row, etc.). If unknown, assign NaN value to first element in the array.
*/
#ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS
static inline void mavlink_msg_global_position_int_cov_send(mavlink_channel_t chan, uint64_t time_usec, uint8_t estimator_type, int32_t lat, int32_t lon, int32_t alt, int32_t relative_alt, float vx, float vy, float vz, const float *covariance)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char buf[MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN];
_mav_put_uint64_t(buf, 0, time_usec);
_mav_put_int32_t(buf, 8, lat);
_mav_put_int32_t(buf, 12, lon);
_mav_put_int32_t(buf, 16, alt);
_mav_put_int32_t(buf, 20, relative_alt);
_mav_put_float(buf, 24, vx);
_mav_put_float(buf, 28, vy);
_mav_put_float(buf, 32, vz);
_mav_put_uint8_t(buf, 180, estimator_type);
_mav_put_float_array(buf, 36, covariance, 36);
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV, buf, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_MIN_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_CRC);
#else
mavlink_global_position_int_cov_t packet;
packet.time_usec = time_usec;
packet.lat = lat;
packet.lon = lon;
packet.alt = alt;
packet.relative_alt = relative_alt;
packet.vx = vx;
packet.vy = vy;
packet.vz = vz;
packet.estimator_type = estimator_type;
mav_array_memcpy(packet.covariance, covariance, sizeof(float)*36);
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV, (const char *)&packet, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_MIN_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_CRC);
#endif
}
/**
* @brief Send a global_position_int_cov message
* @param chan MAVLink channel to send the message
* @param struct The MAVLink struct to serialize
*/
static inline void mavlink_msg_global_position_int_cov_send_struct(mavlink_channel_t chan, const mavlink_global_position_int_cov_t* global_position_int_cov)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
mavlink_msg_global_position_int_cov_send(chan, global_position_int_cov->time_usec, global_position_int_cov->estimator_type, global_position_int_cov->lat, global_position_int_cov->lon, global_position_int_cov->alt, global_position_int_cov->relative_alt, global_position_int_cov->vx, global_position_int_cov->vy, global_position_int_cov->vz, global_position_int_cov->covariance);
#else
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV, (const char *)global_position_int_cov, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_MIN_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_CRC);
#endif
}
#if MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN <= MAVLINK_MAX_PAYLOAD_LEN
/*
This varient of _send() can be used to save stack space by re-using
memory from the receive buffer. The caller provides a
mavlink_message_t which is the size of a full mavlink message. This
is usually the receive buffer for the channel, and allows a reply to an
incoming message with minimum stack space usage.
*/
static inline void mavlink_msg_global_position_int_cov_send_buf(mavlink_message_t *msgbuf, mavlink_channel_t chan, uint64_t time_usec, uint8_t estimator_type, int32_t lat, int32_t lon, int32_t alt, int32_t relative_alt, float vx, float vy, float vz, const float *covariance)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char *buf = (char *)msgbuf;
_mav_put_uint64_t(buf, 0, time_usec);
_mav_put_int32_t(buf, 8, lat);
_mav_put_int32_t(buf, 12, lon);
_mav_put_int32_t(buf, 16, alt);
_mav_put_int32_t(buf, 20, relative_alt);
_mav_put_float(buf, 24, vx);
_mav_put_float(buf, 28, vy);
_mav_put_float(buf, 32, vz);
_mav_put_uint8_t(buf, 180, estimator_type);
_mav_put_float_array(buf, 36, covariance, 36);
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV, buf, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_MIN_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_CRC);
#else
mavlink_global_position_int_cov_t *packet = (mavlink_global_position_int_cov_t *)msgbuf;
packet->time_usec = time_usec;
packet->lat = lat;
packet->lon = lon;
packet->alt = alt;
packet->relative_alt = relative_alt;
packet->vx = vx;
packet->vy = vy;
packet->vz = vz;
packet->estimator_type = estimator_type;
mav_array_memcpy(packet->covariance, covariance, sizeof(float)*36);
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV, (const char *)packet, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_MIN_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_CRC);
#endif
}
#endif
#endif
// MESSAGE GLOBAL_POSITION_INT_COV UNPACKING
/**
* @brief Get field time_usec from global_position_int_cov message
*
* @return [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.
*/
static inline uint64_t mavlink_msg_global_position_int_cov_get_time_usec(const mavlink_message_t* msg)
{
return _MAV_RETURN_uint64_t(msg, 0);
}
/**
* @brief Get field estimator_type from global_position_int_cov message
*
* @return Class id of the estimator this estimate originated from.
*/
static inline uint8_t mavlink_msg_global_position_int_cov_get_estimator_type(const mavlink_message_t* msg)
{
return _MAV_RETURN_uint8_t(msg, 180);
}
/**
* @brief Get field lat from global_position_int_cov message
*
* @return [degE7] Latitude
*/
static inline int32_t mavlink_msg_global_position_int_cov_get_lat(const mavlink_message_t* msg)
{
return _MAV_RETURN_int32_t(msg, 8);
}
/**
* @brief Get field lon from global_position_int_cov message
*
* @return [degE7] Longitude
*/
static inline int32_t mavlink_msg_global_position_int_cov_get_lon(const mavlink_message_t* msg)
{
return _MAV_RETURN_int32_t(msg, 12);
}
/**
* @brief Get field alt from global_position_int_cov message
*
* @return [mm] Altitude in meters above MSL
*/
static inline int32_t mavlink_msg_global_position_int_cov_get_alt(const mavlink_message_t* msg)
{
return _MAV_RETURN_int32_t(msg, 16);
}
/**
* @brief Get field relative_alt from global_position_int_cov message
*
* @return [mm] Altitude above ground
*/
static inline int32_t mavlink_msg_global_position_int_cov_get_relative_alt(const mavlink_message_t* msg)
{
return _MAV_RETURN_int32_t(msg, 20);
}
/**
* @brief Get field vx from global_position_int_cov message
*
* @return [m/s] Ground X Speed (Latitude)
*/
static inline float mavlink_msg_global_position_int_cov_get_vx(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 24);
}
/**
* @brief Get field vy from global_position_int_cov message
*
* @return [m/s] Ground Y Speed (Longitude)
*/
static inline float mavlink_msg_global_position_int_cov_get_vy(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 28);
}
/**
* @brief Get field vz from global_position_int_cov message
*
* @return [m/s] Ground Z Speed (Altitude)
*/
static inline float mavlink_msg_global_position_int_cov_get_vz(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 32);
}
/**
* @brief Get field covariance from global_position_int_cov message
*
* @return Row-major representation of a 6x6 position and velocity 6x6 cross-covariance matrix (states: lat, lon, alt, vx, vy, vz; first six entries are the first ROW, next six entries are the second row, etc.). If unknown, assign NaN value to first element in the array.
*/
static inline uint16_t mavlink_msg_global_position_int_cov_get_covariance(const mavlink_message_t* msg, float *covariance)
{
return _MAV_RETURN_float_array(msg, covariance, 36, 36);
}
/**
* @brief Decode a global_position_int_cov message into a struct
*
* @param msg The message to decode
* @param global_position_int_cov C-struct to decode the message contents into
*/
static inline void mavlink_msg_global_position_int_cov_decode(const mavlink_message_t* msg, mavlink_global_position_int_cov_t* global_position_int_cov)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
global_position_int_cov->time_usec = mavlink_msg_global_position_int_cov_get_time_usec(msg);
global_position_int_cov->lat = mavlink_msg_global_position_int_cov_get_lat(msg);
global_position_int_cov->lon = mavlink_msg_global_position_int_cov_get_lon(msg);
global_position_int_cov->alt = mavlink_msg_global_position_int_cov_get_alt(msg);
global_position_int_cov->relative_alt = mavlink_msg_global_position_int_cov_get_relative_alt(msg);
global_position_int_cov->vx = mavlink_msg_global_position_int_cov_get_vx(msg);
global_position_int_cov->vy = mavlink_msg_global_position_int_cov_get_vy(msg);
global_position_int_cov->vz = mavlink_msg_global_position_int_cov_get_vz(msg);
mavlink_msg_global_position_int_cov_get_covariance(msg, global_position_int_cov->covariance);
global_position_int_cov->estimator_type = mavlink_msg_global_position_int_cov_get_estimator_type(msg);
#else
uint8_t len = msg->len < MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN? msg->len : MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN;
memset(global_position_int_cov, 0, MAVLINK_MSG_ID_GLOBAL_POSITION_INT_COV_LEN);
memcpy(global_position_int_cov, _MAV_PAYLOAD(msg), len);
#endif
}