FlyCube/FlightRouteV2/FlightRouteV2.cs

2201 lines
98 KiB
C#
Raw Normal View History

2024-01-05 21:22:17 +08:00
using Microsoft.SqlServer.Server;
using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Net.Http;
using System.Net.NetworkInformation;
using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Security.Cryptography;
using System.Security.Policy;
using System.Text;
using System.Text.RegularExpressions;
using System.Threading;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Documents;
using System.Windows.Shapes;
using static System.Net.WebRequestMethods;
namespace FlightRouteV2
{
//矩阵类
public struct Matrix
{
public double M11, M12, M13;
public double M21, M22, M23;
public double M31, M32, M33;
public double M41, M42, M43;
/// <summary>
/// 构造函数,接受四个 Vector3 对象
/// </summary>
/// <param name="row1">向量1</param>
/// <param name="row2">向量2</param>
/// <param name="row3">向量3</param>
/// <param name="row4">向量4</param>
public Matrix(Vector3 row1, Vector3 row2, Vector3 row3, Vector3 row4)
{
M11 = row1.X; M12 = row1.Y; M13 = row1.Z;
M21 = row2.X; M22 = row2.Y; M23 = row2.Z;
M31 = row3.X; M32 = row3.Y; M33 = row3.Z;
M41 = row4.X; M42 = row4.Y; M43 = row4.Z;
}
/// <summary>
/// 通过方法实现通过索引的访问
/// </summary>
/// <exception cref="IndexOutOfRangeException"></exception>
public Vector3 this[int index]
{
get
{
switch (index)
{
case 0: return new Vector3(M11, M12, M13);
case 1: return new Vector3(M21, M22, M23);
case 2: return new Vector3(M31, M32, M33);
case 3: return new Vector3(M41, M42, M43);
default:
throw new IndexOutOfRangeException("Index out of range for Matrix");
}
}
}
/// <summary>
/// // 重写 ToString 方法,以便能够直接打印矩阵
/// </summary>
public override string ToString()
{
return $"v1:{M11}, {M12}, {M13}\n" +
$"v2:{M21}, {M22}, {M23}\n" +
$"v3:{M31}, {M32}, {M33}\n" +
$"off:{M41}, {M42}, {M43}";
}
}
//向量类
public struct Vector3
{
public double X { get; set; }
public double Y { get; set; }
public double Z { get; set; }
/// <summary>
/// [数组下标]方式 访问XYZ属性
/// </summary>
/// <param name="index"></param>
/// <returns>[0]X [1]Y [2]Z</returns>
/// <exception cref="IndexOutOfRangeException">访问下标0-2</exception>
public double this[int index]
{
get
{
switch (index)
{
case 0:
return X;
case 1:
return Y;
case 2:
return Z;
default:
throw new IndexOutOfRangeException($"Index {index} is out of range for Vector3");
}
}
set
{
switch (index)
{
case 0:
X = value;
break;
case 1:
Y = value;
break;
case 2:
Z = value;
break;
default:
throw new IndexOutOfRangeException($"Index {index} is out of range for Vector3");
}
}
}
// 静态属性表示单位向量
public static Vector3 UnitX { get { return new Vector3(1.0, 0.0, 0.0); } }
public static Vector3 UnitY { get { return new Vector3(0.0, 1.0, 0.0); } }
public static Vector3 UnitZ { get { return new Vector3(0.0, 0.0, 1.0); } }
/// <summary>
/// 构造 初始化
/// </summary>
/// <param name="x">x坐标</param>
/// <param name="y">y坐标</param>
/// <param name="z">z坐标</param>
public Vector3(double x, double y, double z)
{
this.X = x;
this.Y = y;
this.Z = z;
}
/// <summary>
/// 重载二元坐标加法+ 向量+向量
/// </summary>
/// <param name="v1">向量加数</param>
/// <param name="v2">向量加数</param>
/// <returns></returns>
public static Vector3 operator +(Vector3 v1, Vector3 v2)
{
return new Vector3(v1.X + v2.X, v1.Y + v2.Y, v1.Z + v2.Z);
}
/// <summary>
/// 重载一元坐标加法+ 向量+小数
/// </summary>
/// <param name="v1">向量</param>
/// <param name="i">小数</param>
/// <returns></returns>
public static Vector3 operator +(Vector3 v1, double i)
{
return new Vector3(v1.X + i, v1.Y + i, v1.Z + i);
}
/// <summary>
/// 重载一元坐标加法+ 向量+整数
/// </summary>
/// <param name="v1">向量</param>
/// <param name="i">整数</param>
/// <returns></returns>
public static Vector3 operator +(Vector3 v1, int i)
{
return new Vector3(v1.X + (double)i, v1.Y + (double)i, v1.Z + (double)i);
}
/// <summary>
/// 重载二元坐标减法- 向量-向量
/// </summary>
/// <param name="v1">向量被减数</param>
/// <param name="v2">向量减数</param>
/// <returns></returns>
public static Vector3 operator -(Vector3 v1, Vector3 v2)
{
return new Vector3(v1.X - v2.X, v1.Y - v2.Y, v1.Z - v2.Z);
}
/// <summary>
/// 重载一元坐标加法- 向量-小数
/// </summary>
/// <param name="v1">向量被减数</param>
/// <param name="i">小数减数</param>
/// <returns></returns>
public static Vector3 operator -(Vector3 v1, double i)
{
return new Vector3(v1.X - i, v1.Y - i, v1.Z - i);
}
/// <summary>
/// 重载一元坐标加法- 向量-整数
/// </summary>
/// <param name="v1">向量被减数</param>
/// <param name="i">整数减数</param>
/// <returns></returns>
public static Vector3 operator -(Vector3 v1, int i)
{
return new Vector3(v1.X - (double)i, v1.Y - (double)i, v1.Z - (double)i);
}
/// <summary>
/// 重载一元坐标乘法* 向量*小数
/// </summary>
/// <param name="v1">向量</param>
/// <param name="i">小数乘数</param>
/// <returns>得到向量的倍数向量</returns>
public static Vector3 operator *(Vector3 v1, double i)
{
return new Vector3(v1.X * i, v1.Y * i, v1.Z * i);
}
/// <summary>
/// 重载一元坐标乘法* 向量*整数
/// </summary>
/// <param name="v1">向量</param>
/// <param name="i">整数乘数</param>
/// <returns>得到向量的倍数向量</returns>
public static Vector3 operator *(Vector3 v1, int i)
{
return new Vector3(v1.X * (double)i, v1.Y * (double)i, v1.Z * (double)i);
}
/// <summary>
/// 重载一元坐标除法/ 向量/小数
/// </summary>
/// <param name="v1">向量</param>
/// <param name="i">小数除数</param>
/// <returns>得到向量的商向量</returns>
public static Vector3 operator /(Vector3 v1, double i)
{
return new Vector3(v1.X / i, v1.Y / i, v1.Z / i);
}
/// <summary>
/// 重载一元坐标除法/ 向量/整数
/// </summary>
/// <param name="v1">向量</param>
/// <param name="i">整数除数</param>
/// <returns>得到向量的商向量</returns>
public static Vector3 operator /(Vector3 v1, int i)
{
return new Vector3(v1.X / (double)i, v1.Y / (double)i, v1.Z / (double)i);
}
/// <summary>
/// 重载== 向量==向量
/// </summary>
/// <param name="v1">向量1</param>
/// <param name="v2">向量2</param>
/// <returns>布尔值 判断向量是否相等</returns>
public static bool operator ==(Vector3 v1, Vector3 v2)
{
if (v1.X == v2.X && v1.Y == v2.Y && v1.Z == v2.Z) return true;
return false;
}
/// <summary>
/// 重载!= 向量!=向量
/// </summary>
/// <param name="v1">向量1</param>
/// <param name="v2">向量2</param>
/// <returns>布尔值 判断向量是否不相等</returns>
public static bool operator !=(Vector3 v1, Vector3 v2)
{
if (v1.X != v2.X || v1.Y != v2.Y || v1.Z != v2.Z) return true;
return false;
}
/// <summary>
/// 确定指定的对象是否等于当前向量。
/// </summary>
/// <param name="obj">要与当前向量比较的对象。</param>
/// <returns>如果指定的对象等于当前向量,则为 <c>true</c>;否则为 <c>false</c>。</returns>
public override bool Equals(object obj)
{
// 检查对象是否与当前向量具有相同的类型
if (obj is Vector3)
{
Vector3 vector = (Vector3)obj;
// 比较向量的每个分量
return X == vector.X &&
Y == vector.Y &&
Z == vector.Z;
}
// 如果对象不是 Vector3 类型,则它们不相等
return false;
}
/// <summary>
/// 向量按矩阵旋转和偏移
/// </summary>
/// <param name="mat">矩阵</param>
/// <returns>返回一个新的向量</returns>
public Vector3 Multiply(Matrix mat)
{
Vector3 re = new Vector3();
//矩阵相乘 ps:旋转角度
re.X = this.X * mat[1].X + this.Y * mat[2].X + this.Z * mat[0].X;
re.Y = this.X * mat[1].Y + this.Y * mat[2].Y + this.Z * mat[0].Y;
re.Z = this.X * mat[1].Z + this.Y * mat[2].Z + this.Z * mat[0].Z;
//off偏移
re = re + mat[3];
return re;
}
/// <summary>
/// 求模长
/// </summary>
/// <returns>向量到原点的模长</returns>
public double GetMag()
{
return Math.Sqrt(Math.Pow(this.X, 2) + Math.Pow(this.Y, 2) + Math.Pow(this.Z, 2));
}
/// <summary>
/// 求模长 平方
/// </summary>
/// <returns>向量到原点的模长的平方值</returns>
public double GetMagSquared()
{
return Math.Pow(this.X, 2) + Math.Pow(this.Y, 2) + Math.Pow(this.Z, 2);
}
/// <summary>
/// 标准化坐标 无返回值 直接改变愿坐标
/// </summary>
/// <param name="multiple">标准化单位</param>
public void Normalize(double multiple = 1.0)
{
double magSq = Math.Pow(this.X, 2) + Math.Pow(this.Y, 2) + Math.Pow(this.Z, 2);
if (magSq > 0)
{
double oneOverMag = multiple / Math.Sqrt(magSq);
this.X *= oneOverMag;
this.Y *= oneOverMag;
this.Z *= oneOverMag;
}
}
/// <summary>
/// 标准化 返回一个标准化之后的值 不改变自身
/// </summary>
/// <param name="multiple">标准化单位</param>
/// <returns>标准化之后的值</returns>
public Vector3 NormalizEd(double multiple = 1.0)
{
Vector3 re = new Vector3();
double magSq = Math.Pow(this.X, 2) + Math.Pow(this.Y, 2) + Math.Pow(this.Z, 2);
if (magSq > 0)
{
double oneOverMag = multiple / Math.Sqrt(magSq);
re.X = this.X * oneOverMag;
re.Y = this.Y * oneOverMag;
re.Z = this.Z * oneOverMag;
}
return re;
}
/// <summary>
/// 归零 改变自身数值 一般配合归位使用
/// </summary>
/// <param name="v2"></param>
public void SetZero(Vector3 v2)
{
this.X -= v2.X;
this.Y -= v2.Y;
this.Z -= v2.Z;
}
/// <summary>
/// 归零 返回一个归零值 不改变自身
/// </summary>
/// <param name="v2"></param>
/// <returns></returns>
public Vector3 SetZeroEd(Vector3 v2)
{
Vector3 re = new Vector3(this.X - v2.X, this.Y - v2.Y, this.Z - v2.Z);
return re;
}
/// <summary>
/// 归位
/// </summary>
/// <param name="v2"></param>
public void SetFormerly(Vector3 v2)
{
this.X += v2.X;
this.Y += v2.Y;
this.Z += v2.Z;
}
/// <summary>
/// 重写ToString 打印坐标
/// </summary>
/// <returns>坐标字符串</returns>
public override string ToString()
{
string x = Convert.ToString(this.X);
string y = Convert.ToString(this.Y);
string z = Convert.ToString(this.Z);
return string.Format($"X轴:{x} Y轴:{y} Z轴:{z}");
}
/// <summary>
/// 哈希码是一个整数值,用于对对象进行快速比较和索引
/// </summary>
/// <returns>哈希码</returns>
public override int GetHashCode()
{
int hashCode = -307843816;
hashCode = hashCode * -1521134295 + X.GetHashCode();
hashCode = hashCode * -1521134295 + Y.GetHashCode();
hashCode = hashCode * -1521134295 + Z.GetHashCode();
return hashCode;
}
}
//坐标操作与验证
public static class FlyVecFun
{
/// <summary>
/// 随机种子
/// </summary>
public static int RandomSeed { get; set; } = 1;
2024-01-05 21:22:17 +08:00
/// <summary>
/// 航线 线间距 平方值
/// </summary>
public static double LineDistanceSquare { get; set; } = 32400;
/// <summary>
/// 飞行过程中间距 平方值
/// </summary>
2024-04-03 10:28:28 +08:00
public static double SpaceBetweenSquare { get; set; } = 250000;
/// <summary>
/// 算绕行时 中间取点 true在正中间取点即 一个圆盘 false在一个圆柱体内取点
/// </summary>
public static bool singleCircle = true;
2024-01-05 21:22:17 +08:00
/// <summary>
/// 输出日志回调函数
/// </summary>
/// <param name="str">日志内容</param>
public delegate void SomeCalculateWay(string str);
/// <summary>
/// 输出进度日志回调函数
/// </summary>
/// <param name="val">进度值ps:0-100</param>
public delegate void Schedule(int val);
/// <summary>
/// Arraylist 转 Vector3[] 坐标集
/// </summary>
/// <param name="arr">Arraylist 坐标集</param>
/// <returns>Vector3[] 坐标集</returns>
public static Vector3[] ArrToVec(ArrayList arr)
{
int cou = arr.Count;
Vector3[] re = new Vector3[cou];
int key = 0;
foreach (Vector3 item in arr)
{
re[key] = item;
key++;
}
return re;
}
/// <summary>
/// 取数组最大 或者最小值
/// </summary>
/// <param name="arr">数组</param>
/// <param name="isMax">true返回最大值 false返回最小值</param>
/// <returns>根据参数返回 最大或者最小值</returns>
private static double GetMaxOrMin(double[] arr, bool isMax = true)
{
Array.Sort(arr);//给数组arr排序
if (isMax)
return arr[arr.Length - 1];
else
return arr[0];
}
/// <summary>
/// 取数组最大 或者最小值 的数组下标
/// </summary>
/// <param name="arr">数组</param>
/// <param name="isMax">true返回最大值 false返回最小值</param>
/// <returns>数组下标</returns>
private static int GetIndexOfMaxOrMin(double[] arr, bool isMax = true)
{
int[] indexes = new int[arr.Length];
for (int i = 0; i < arr.Length; i++)
{
indexes[i] = i; // 保存每个元素的原始索引
}
Array.Sort(arr, indexes); // 按值排序同时更新索引数组
// 根据 isMax 参数返回相应的索引
return isMax ? indexes[arr.Length - 1] : indexes[0];
}
/// <summary>
/// 获取列表中最小值的随机下标
/// </summary>
/// <param name="list">输入的列表</param>
/// <returns>最小值的随机下标</returns>
private static int GetRandomMinIndex(List<int> list)
{
// 检查输入的列表是否为 null 或为空
if (list == null || list.Count == 0)
{
throw new ArgumentException("列表不能为 null 或为空");
}
int minValue = int.MaxValue; // 初始化为 int 类型的最大值
List<int> minIndices = new List<int>(); // 存储最小值的下标列表
for (int i = 0; i < list.Count; i++)
{
// 如果当前元素比最小值小,更新最小值和清空之前的下标列表
if (list[i] < minValue)
{
minValue = list[i];
minIndices.Clear(); // 清空之前的下标列表
minIndices.Add(i); // 添加当前下标
}
// 如果当前元素等于最小值,添加当前下标到列表
else if (list[i] == minValue)
{
minIndices.Add(i);
}
}
// 如果最小值下标列表为空,表示没有找到最小值
if (minIndices.Count == 0)
{
throw new InvalidOperationException("列表中没有找到最小值");
}
// 生成一个随机数,用于从最小值下标列表中随机选择一个下标
Random random = new Random(RandomSeed);
2024-01-05 21:22:17 +08:00
return minIndices[random.Next(minIndices.Count)];
}
/// <summary>
/// 二维数组转一维数组 并去重
/// </summary>
/// <param name="twoArr">二维数组</param>
/// <returns>去重一维数组</returns>
private static List<int> TwoArrToArr(List<int[]> twoArr)
{
// 创建一个用于存储去重后的一维数组的列表
List<int> arr = new List<int>();
// 遍历二维数组的每个子数组
foreach (int[] item in twoArr)
{
// 查找第一个元素在一维数组中的索引
int i = arr.IndexOf(item[0]);
// 如果索引小于0表示该元素在一维数组中不存在将其添加到一维数组
if (i < 0)
{
arr.Add(item[0]);
}
// 查找第二个元素在一维数组中的索引
int x = arr.IndexOf(item[1]);
// 如果索引小于0表示该元素在一维数组中不存在将其添加到一维数组
if (x < 0)
{
arr.Add(item[1]);
}
}
// 返回去重后的一维数组
return arr;
}
/// <summary>
/// 获取交叉序列 ps:处理二维数组 把有关联的子数组合并 例如:[[0,2][0,3][3,4][5,6]] 结果[[0,2,3,4][5,6]]
/// </summary>
/// <param name="arr">需要处理的二维数组 </param>
/// <returns>交叉序列</returns>
private static List<List<int>> FindConnected(List<int[]> arr)
{
Dictionary<int, List<int>> graph = new Dictionary<int, List<int>>();
Dictionary<int, bool> visited = new Dictionary<int, bool>();
List<List<int>> result = new List<List<int>>();
2024-01-05 21:22:17 +08:00
// 构建图
foreach (var edge in arr)
{
foreach (var node in edge)
{
if (!graph.ContainsKey(node))
{
graph[node] = new List<int>();
visited[node] = false;
}
}
}
foreach (var edge in arr)
{
graph[edge[0]].Add(edge[1]);
graph[edge[1]].Add(edge[0]);
}
foreach (var node in graph.Keys)
{
if (!visited[node])
{
List<int> connected = new List<int>();
DFS(node, connected, graph, visited);
result.Add(connected);
}
}
return result;
}
private static void DFS(int node, List<int> connected, Dictionary<int, List<int>> graph, Dictionary<int, bool> visited)
{
visited[node] = true;
connected.Add(node);
foreach (var neighbor in graph[node])
{
if (!visited[neighbor])
{
DFS(neighbor, connected, graph, visited);
}
}
}
/// <summary>
/// 获取一组序列的所有排列方式 ps:[0,1,2] 结果[[0, 1, 2],[0, 2, 1],[1, 0, 2],[1, 2, 0],[2, 0, 1],[2, 1, 0]]
/// </summary>
/// <param name="array">一组序列</param>
/// <returns>所有序列的排列方式</returns>
private static List<List<int>> Permutations(List<int> array)
{
List<List<int>> result = new List<List<int>>();
GeneratePermutations(array, 0, array.Count - 1, result);
return result;
}
private static void GeneratePermutations(List<int> array, int start, int end, List<List<int>> result)
{
if (start == end)
{
result.Add(new List<int>(array));
}
else
{
for (int i = start; i <= end; i++)
{
int temp = array[start];
array[start] = array[i];
array[i] = temp;
GeneratePermutations(array, start + 1, end, result);
temp = array[start];
array[start] = array[i];
array[i] = temp;
}
}
}
/// <summary>
/// 按照对应关系 生成新的b坐标集合
/// </summary>
/// <param name="aVecs">a坐标集合</param>
/// <param name="bVecs">b坐标集合</param>
/// <param name="match">a b集合的对应关系</param>
/// <returns>坐标集合</returns>
private static Vector3[] CreateNewBVecs(Vector3[] bVecs, List<int[]> match)
{
Vector3[] new_bVecs = new Vector3[bVecs.Length];
foreach (int[] m in match)
{
new_bVecs[m[0]] = bVecs[m[1]];
}
return new_bVecs;
}
/// <summary>
/// 从数组中删除指定索引处的元素
/// </summary>
/// <typeparam name="T">数组元素类型</typeparam>
/// <param name="array">要操作的数组</param>
/// <param name="indicesToRemove">要删除的元素的索引列表</param>
/// <returns>删除元素后的新数组</returns>
private static T[] RemoveElementsAtIndices<T>(T[] array, List<int> indicesToRemove)
{
// 检查索引是否有效
if (indicesToRemove == null || indicesToRemove.Count == 0)
{
// 没有要删除的索引,返回原数组
return array;
}
// 创建一个新数组,长度为原数组长度减去要删除的元素数量
T[] newArray = new T[array.Length - indicesToRemove.Count];
int newIndex = 0;
// 复制不包括指定索引的元素到新数组中
for (int i = 0; i < array.Length; i++)
{
if (!indicesToRemove.Contains(i))
{
newArray[newIndex] = array[i];
newIndex++;
}
}
// 返回新数组
return newArray;
}
/// <summary>
2024-01-05 21:22:17 +08:00
/// 设置中间航点
/// </summary>
/// <param name="aVec">起点</param>
/// <param name="bVec">目标点</param>
/// <param name="middlePos">比例</param>
/// <returns></returns>
private static Vector3 SetMiddleVec(Vector3 aVec, Vector3 bVec, double middlePos = 0.5)
{
return (bVec - aVec) * middlePos + aVec;
}
/// <summary>
/// 两点距离
/// </summary>
/// <param name="v1">坐标1</param>
/// <param name="v2">坐标2</param>
/// <returns>两点之间距离</returns>
private static double GageLength(Vector3 v1, Vector3 v2)
{
return Math.Sqrt(GageLengthSquare(v1, v2));
}
/// <summary>
/// 两点距离的平方
/// </summary>
/// <param name="v1">坐标1</param>
/// <param name="v2">坐标2</param>
/// <returns>两点距离的平方</returns>
private static double GageLengthSquare(Vector3 v1, Vector3 v2)
{
return Math.Pow(v1.X - v2.X, 2) + Math.Pow(v1.Y - v2.Y, 2) + Math.Pow(v1.Z - v2.Z, 2);
}
/// <summary>
/// 点积
/// </summary>
/// <param name="v1">向量1</param>
/// <param name="v2">向量2</param>
/// <returns>点积</returns>
private static double DotPro(Vector3 v1, Vector3 v2)
{
return v1.X * v2.X + v1.Y * v2.Y + v1.Z * v2.Z;
}
/// <summary>
/// 叉积 ps法线向量
2024-01-05 21:22:17 +08:00
/// </summary>
/// <param name="v1">向量1</param>
/// <param name="v2">向量2</param>
/// <returns>两个向量叉积</returns>
private static Vector3 CrossPro(Vector3 v1, Vector3 v2)
{
double x = v1.Y * v2.Z - v1.Z * v2.Y;
double y = v1.Z * v2.X - v1.X * v2.Z;
double z = v1.X * v2.Y - v1.Y * v2.X;
return new Vector3(x, y, z);
}
/// <summary>
/// 计算两个向量之间的夹角 角度
/// </summary>
/// <param name="v1">第一个向量</param>
/// <param name="v2">第二个向量</param>
/// <returns>角度</returns>
private static double AngleBetween(Vector3 v1, Vector3 v2)
2024-01-05 21:22:17 +08:00
{
// 计算点积
double dotProduct = DotPro(v1, v2);
// 计算向量长度
double magnitude1 = v1.GetMag();
double magnitude2 = v2.GetMag();
// 使用 Atan2 计算弧度
double thetaRadians = Math.Atan2(CrossPro(v1, v2).GetMag(), dotProduct);
// 弧度转角度
double thetaDegrees = thetaRadians * (180 / Math.PI);
return thetaDegrees;
}
/// <summary>
/// 计算某个点到平面垂线与平面的交点
/// </summary>
/// <param name="vec1">平面上的点1</param>
/// <param name="vec2">平面上的点2</param>
/// <param name="vec3">平面上的点3</param>
/// <param name="vec4">被求点</param>
/// <returns>交点坐标</returns>
private static Vector3 CalculateIntersectionPoint(Vector3 vec1, Vector3 vec2, Vector3 vec3, Vector3 vec4)
{
// 计算平面的法线向量
Vector3 normal = CrossPro(vec2 - vec1, vec3 - vec1);
normal.Normalize();
// 计算第4个点到平面的距离
double distance = DotPro(normal, vec1);
// 计算第4个点到平面的投影点坐标
double projection = DotPro(normal, vec4) - distance;
// 计算交点坐标
Vector3 intersectionPoint = vec4 - normal * projection;
return intersectionPoint;
}
/// <summary>
/// 找到能组成平面的点的最大数量,并返回组成最大平面的点的索引。
/// </summary>
/// <param name="vecs">Vector3 点的列表。</param>
/// <returns>组成最大平面的点的索引。</returns>
2024-01-24 16:10:20 +08:00
private static List<int> FindMaxPlaneIndices(Vector3[] vecs)
{
int maxPointsOnPlane = 0;
List<int> maxPointsIndices = new List<int>(); //记录返回值
int planeCou = vecs.Length; // 飞机总数
for (int i = 0; i < planeCou; i++)
{
for (int j = i + 1; j < planeCou; j++)
{
for (int k = j + 1; k < planeCou; k++)
{
int currentPointsOnPlane = 3; // 当前遍历的三个点肯定在同一平面上
for (int l = k + 1; l < planeCou; l++)
{
if (IsVecsOnPlane(vecs[i], vecs[j], vecs[k], vecs[l]))
{
// 当前的 l 也在同一平面上
currentPointsOnPlane++;
}
}
// 检查当前平面是否比之前找到的平面更大
if (currentPointsOnPlane > maxPointsOnPlane)
{
maxPointsOnPlane = currentPointsOnPlane;
maxPointsIndices.Clear();
maxPointsIndices.Add(i);
maxPointsIndices.Add(j);
maxPointsIndices.Add(k);
// 添加当前平面的 l 索引
for (int l = k + 1; l < planeCou; l++)
{
if (IsVecsOnPlane(vecs[i], vecs[j], vecs[k], vecs[l]))
{
maxPointsIndices.Add(l);
}
}
}
}
}
}
return maxPointsIndices;
}
/// <summary>
2024-01-05 21:22:17 +08:00
/// 检查4个点是否在一个平面上
/// </summary>
/// <param name="vector1">点1</param>
/// <param name="vector2">点2</param>
/// <param name="vector3">点3</param>
/// <param name="vector4">点4</param>
/// <returns>true在一个平面 false不在一个平面</returns>
private static bool IsVecsOnPlane(Vector3 vec1, Vector3 vec2, Vector3 vec3, Vector3 vec4)
2024-01-05 21:22:17 +08:00
{
//计算三个向量
Vector3 v1v2 = vec2 - vec1;
Vector3 v1v3 = vec3 - vec1;
Vector3 v1v4 = vec4 - vec1;
//计算法线向量
Vector3 normal_vector = CrossPro(v1v2, v1v3);
2024-01-05 21:22:17 +08:00
//计算点到平面的距离
double distance = DotPro(normal_vector, v1v4) / normal_vector.GetMag();
//设置一个阈值,判断是否共面
double epsilon = 10; //单位厘米
return Math.Abs(distance) < epsilon;
}
/// <summary>
/// 判断3个点是否在同一条直线上
/// </summary>
/// <param name="vector1">点1</param>
/// <param name="vector2">点2</param>
/// <param name="vector3">点3</param>
/// <returns>true在一条直线上 false不在一条直线上</returns>
private static bool IsVecsOnLine(Vector3 vec1, Vector3 vec2, Vector3 vec3)
{
Vector3 v1 = vec2 - vec1;
Vector3 v2 = vec3 - vec1;
// 计算点积
double dotProduct = DotPro(v1, v2);
// 计算向量长度
double magnitude1 = v1.GetMag();
double magnitude2 = v2.GetMag();
// 使用 Atan2 计算弧度
double thetaRadians = Math.Atan2(CrossPro(v1, v2).GetMag(), dotProduct);
// 弧度转角度
double thetaDegrees = thetaRadians * (180 / Math.PI);
if (Math.Abs(thetaDegrees) < 10) return true;
else return false;
}
/// <summary>
/// 从顶视图 判断点是否在两条线内之间
2024-01-05 21:22:17 +08:00
/// </summary>
/// <param name="A">线段1端点</param>
/// <param name="B">线段1端点</param>
/// <param name="C">线段2端点</param>
/// <param name="D">线段2端点</param>
/// <param name="P">被判断点</param>
/// <returns>true点在两条线内部 false点不在两条线内部</returns>
private static bool IsPointBetweenLines(Vector3 A, Vector3 B, Vector3 C, Vector3 D, Vector3 P)
{
/// Y轴亚平 即顶视图
A = new Vector3(A.X, 0, A.Z);
2024-01-05 21:22:17 +08:00
B = new Vector3(B.X, 0, B.Z);
C = new Vector3(C.X, 0, C.Z);
D = new Vector3(D.X, 0, D.Z);
P = new Vector3(P.X, 0, P.Z);
Vector3 dirAB = new Vector3(B.X - A.X, B.Y - A.Y, B.Z - A.Z);
Vector3 dirCD = new Vector3(D.X - C.X, D.Y - C.Y, D.Z - C.Z);
Vector3 vecAP = new Vector3(P.X - A.X, P.Y - A.Y, P.Z - A.Z);
Vector3 vecCP = new Vector3(P.X - C.X, P.Y - C.Y, P.Z - C.Z);
double cross1 = dirAB.X * vecAP.Z - dirAB.Z * vecAP.X;
double cross2 = dirCD.X * vecCP.Z - dirCD.Z * vecCP.X;
return cross1 * cross2 < 0;
}
/// <summary>
/// 辅助方法,用于检查向量是否为零向量
/// </summary>
/// <param name="vector">向量</param>
/// <returns></returns>
private static bool IsZero(this Vector3 vector)
{
return vector.X == 0 && vector.Y == 0 && vector.Z == 0;
}
/// <summary>
/// 获取两条线段 的最近位置的距离和占比
/// </summary>
/// <param name="a1">线段1起始点</param>
/// <param name="a2">线段1起终点</param>
/// <param name="b1">线段2起始点</param>
/// <param name="b2">线段2起终点</param>
/// <returns>[在线段1占比在线段2占比最近距离]</returns>
private static double RecentlySquareOfLine(Vector3 a1, Vector3 a2, Vector3 b1, Vector3 b2)
{
if (a1 == a2) a2 += 1;// 防止线段长度为0
if (b1 == b2) b2 += 1;
double ux = a2.X - a1.X;
double uy = a2.Y - a1.Y;
double uz = a2.Z - a1.Z;
double vx = b2.X - b1.X;
double vy = b2.Y - b1.Y;
double vz = b2.Z - b1.Z;
double wx = a1.X - b1.X;
double wy = a1.Y - b1.Y;
double wz = a1.Z - b1.Z;
double a = (ux * ux + uy * uy + uz * uz);
double b = (ux * vx + uy * vy + uz * vz);
double c = (vx * vx + vy * vy + vz * vz);
double d = (ux * wx + uy * wy + uz * wz);
double e = (vx * wx + vy * wy + vz * wz);
double dt = a * c - b * b;
double sd = dt;
double td = dt;
double sn = 0.0;
double tn = 0.0;
if (IsEqual(dt, 0.0))
{
sn = 0.0;
sd = 1.00;
tn = e;
td = c;
}
else
{
sn = (b * e - c * d);
tn = (a * e - b * d);
if (sn < 0.0)
{
sn = 0.0;
tn = e;
td = c;
}
else if (sn > sd)
{
sn = sd;
tn = e + b;
td = c;
}
}
if (tn < 0.0)
{
tn = 0.0;
if (-d < 0.0) sn = 0.0;
else if (-d > a) sn = sd;
else
{
sn = -d;
sd = a;
}
}
else if (tn > td)
{
tn = td;
if ((-d + b) < 0.0) sn = 0.0;
else if ((-d + b) > a) sn = sd;
else
{
sn = (-d + b);
sd = a;
}
}
double sc = 0.0;
double tc = 0.0;
if (IsEqual(sn, 0.0)) sc = 0.0;
else sc = sn / sd;//最近点在第一条线占比
if (IsEqual(tn, 0.0)) tc = 0.0;
else tc = tn / td;//最近点在第二条线占比
double dx = wx + (sc * ux) - (tc * vx);
double dy = wy + (sc * uy) - (tc * vy);
double dz = wz + (sc * uz) - (tc * vz);
return dx * dx + dy * dy + dz * dz;//两线最近距离的平方
}
private static bool IsEqual(double x, double y)
{
if (Math.Abs(x - y) < 1e-7)
{
return true;
}
return false;
}
/// <summary>
/// 按比例在两条线段上截取对应点间的最小距离 平方
/// </summary>
/// <param name="a1">线段1起始点</param>
/// <param name="a2">线段1起终点</param>
/// <param name="b1">线段2起始点</param>
/// <param name="b2">线段2起终点</param>
/// <returns>最小距离的平方值</returns>
private static double MinDistanceSquareOfLine(Vector3 a1, Vector3 a2, Vector3 b1, Vector3 b2)
{
//相对位置和相对速度
Vector3 d0 = b1 - a1;
Vector3 v_rel = (b2 - b1) - (a2 - a1);
//计算最小距离位置 占比
double vd = DotPro(v_rel, v_rel);
double proportion;//最近距离占比
if (vd != 0)
{
proportion = Math.Max(0, Math.Min(1, -DotPro(d0, v_rel) / vd));//max min函数把比例限制在0-1 保证比例在线段上
}
else
{
proportion = 0;
}
//计算最小距离平方
Vector3 d_min = d0 + v_rel * proportion;
return d_min.GetMagSquared();
}
/// <summary>
/// 获取坐标集合的重心或中心
/// </summary>
/// <param name="pos">坐标集合</param>
/// <param name="isCentroid">默认返回为true重心 false则为中心</param>
/// <returns>重心或中心坐标</returns>
public static Vector3 GetPosCenter(Vector3[] pos, bool isCentroid = true)
{
int cou = pos.Length;
if (isCentroid)//重心
{
double x = 0;
double y = 0;
double z = 0;
foreach (var item in pos)
{
x += item.X;
y += item.Y;
z += item.Z;
}
x = x / cou;
y = y / cou;
z = z / cou;
return new Vector3(x, y, z);
}
else//中心
{
double[] x = new double[cou];
double[] y = new double[cou];
double[] z = new double[cou];
int key = 0;
foreach (var item in pos)
{
x[key] = item.X;
y[key] = item.Y;
z[key] = item.Z;
key++;
}
double xc = (GetMaxOrMin(x) + GetMaxOrMin(x, false)) * .5;
double yc = (GetMaxOrMin(y) + GetMaxOrMin(y, false)) * .5;
double zc = (GetMaxOrMin(z) + GetMaxOrMin(z, false)) * .5;
return new Vector3(xc, yc, zc);
}
}
/// <summary>
/// 获取坐标集合的重心或中心
/// </summary>
/// <param name="pos">坐标集合</param>
/// <param name="isCentroid">默认返回为true重心 false则为中心</param>
/// <returns>重心或中心坐标</returns>
private static Vector3 GetPosCenter(List<Vector3> pos, bool isCentroid = true)
{
int cou = pos.Count;
if (isCentroid)//重心
{
double x = 0;
double y = 0;
double z = 0;
foreach (var item in pos)
{
x += item.X;
y += item.Y;
z += item.Z;
}
x = x / cou;
y = y / cou;
z = z / cou;
return new Vector3(x, y, z);
}
else//中心
{
double[] x = new double[cou];
double[] y = new double[cou];
double[] z = new double[cou];
int key = 0;
foreach (var item in pos)
{
x[key] = item.X;
y[key] = item.Y;
z[key] = item.Z;
key++;
}
double xc = (GetMaxOrMin(x) + GetMaxOrMin(x, false)) * .5;
double yc = (GetMaxOrMin(y) + GetMaxOrMin(y, false)) * .5;
double zc = (GetMaxOrMin(z) + GetMaxOrMin(z, false)) * .5;
return new Vector3(xc, yc, zc);
}
}
/// <summary>
/// 获取坐标集合 的总宽度 高度 长度
/// </summary>
/// <param name="pos">坐标集合</param>
/// <returns>返回数组[0]宽度[1]高度[2]长度</returns>
public static double[] GetVecsWithHighLength(Vector3[] pos)
{
List<double> w = new List<double>();
List<double> h = new List<double>();
List<double> l = new List<double>();
foreach (var item in pos)
{
w.Add(item.X);
h.Add(item.Y);
l.Add(item.Z);
}
double[] re = new double[3];
re[0] = w.Max() - w.Min();
re[1] = h.Max() - h.Min();
re[2] = l.Max() - l.Min();
return re;
}
/// <summary>
/// 碰撞检测
/// </summary>
/// <param name="aVecs">始点坐标集合</param>
/// <param name="bVecs">终点坐标集合</param>
/// <returns></returns>
private static List<int[]> AirImitation(Vector3[] aVecs, Vector3[] bVecs)
{
List<int[]> planesCollision = new List<int[]>(); //所有碰撞的组
int planeCou = aVecs.Length; //获取飞机总数
for (int a = 0; a < planeCou; a++)
{
for (int b = 0; a + 1 + b < planeCou; b++)
{
//判断两条轨迹 之间的最小距离
double distanceSquare = RecentlySquareOfLine(aVecs[a], bVecs[a], aVecs[a + 1 + b], bVecs[a + 1 + b]);
if (distanceSquare < LineDistanceSquare)
{
//判断飞机距离是否过近
double planeLenSquare = MinDistanceSquareOfLine(aVecs[a], bVecs[a], aVecs[a + 1 + b], bVecs[a + 1 + b]);
if (planeLenSquare < SpaceBetweenSquare)
{
planesCollision.Add(new int[] { a, a + 1 + b });
}
}
}
}
return planesCollision;
}
/// <summary>
/// 碰撞检测
/// </summary>
/// <param name="aVecs">始点坐标集合</param>
/// <param name="bVecs">终点坐标集合</param>
/// <returns></returns>
private static List<int[]> AirImitation(List<Vector3> aVecs, List<Vector3> bVecs)
{
List<int[]> planesCollision = new List<int[]>(); //所有碰撞的组
int planeCou = aVecs.Count; //获取飞机总数
for (int a = 0; a < planeCou; a++)
{
for (int b = 0; a + 1 + b < planeCou; b++)
{
//判断两条轨迹 之间的最小距离
double distanceSquare = RecentlySquareOfLine(aVecs[a], bVecs[a], aVecs[a + 1 + b], bVecs[a + 1 + b]);
if (distanceSquare < LineDistanceSquare)
{
//判断飞机距离是否过近
double planeLenSquare = MinDistanceSquareOfLine(aVecs[a], bVecs[a], aVecs[a + 1 + b], bVecs[a + 1 + b]);
if (planeLenSquare < SpaceBetweenSquare)
{
planesCollision.Add(new int[] { a, a + 1 + b });
}
}
}
}
return planesCollision;
}
/// <summary>
/// 碰撞检测
/// </summary>
/// <param name="aVecs">始点坐标集合</param>
/// <param name="bVecs">终点坐标集合</param>
/// <returns></returns>
private static List<int[]> AirImitation(Vector3[] aVecs, List<Vector3> bVecs)
2024-01-05 21:22:17 +08:00
{
List<int[]> planesCollision = new List<int[]>(); //所有碰撞的组
int planeCou = aVecs.Length; //获取飞机总数
for (int a = 0; a < planeCou; a++)
{
for (int b = 0; a + 1 + b < planeCou; b++)
{
//判断两条轨迹 之间的最小距离
double distanceSquare = RecentlySquareOfLine(aVecs[a], bVecs[a], aVecs[a + 1 + b], bVecs[a + 1 + b]);
if (distanceSquare < LineDistanceSquare)
{
//判断飞机距离是否过近
double planeLenSquare = MinDistanceSquareOfLine(aVecs[a], bVecs[a], aVecs[a + 1 + b], bVecs[a + 1 + b]);
if (planeLenSquare < SpaceBetweenSquare)
{
planesCollision.Add(new int[] { a, a + 1 + b });
}
}
}
}
return planesCollision;
}
/// <summary>
/// 碰撞检测
/// </summary>
/// <param name="aVecs">始点坐标集合</param>
/// <param name="bVecs">终点坐标集合</param>
/// <returns></returns>
private static List<int[]> AirImitation(List<Vector3> aVecs, Vector3[] bVecs)
2024-01-05 21:22:17 +08:00
{
List<int[]> planesCollision = new List<int[]>(); //所有碰撞的组
int planeCou = aVecs.Count; //获取飞机总数
for (int a = 0; a < planeCou; a++)
{
for (int b = 0; a + 1 + b < planeCou; b++)
{
//判断两条轨迹 之间的最小距离
double distanceSquare = RecentlySquareOfLine(aVecs[a], bVecs[a], aVecs[a + 1 + b], bVecs[a + 1 + b]);
if (distanceSquare < LineDistanceSquare)
{
//判断飞机距离是否过近
double planeLenSquare = MinDistanceSquareOfLine(aVecs[a], bVecs[a], aVecs[a + 1 + b], bVecs[a + 1 + b]);
if (planeLenSquare < SpaceBetweenSquare)
{
planesCollision.Add(new int[] { a, a + 1 + b });
}
}
}
}
return planesCollision;
}
/// <summary>
/// 单机碰撞检测
/// </summary>
/// <param name="onlyPlaneId">飞机的id PS:id从0开始</param>
/// <param name="aVecs">飞机起始坐标集合</param>
/// <param name="bVecs">飞机终点坐标集合</param>
/// <returns>true:有碰撞 false:无碰撞</returns>
private static bool OnlyImitation(int onlyPlaneId, Vector3[] aVecs, Vector3[] bVecs)
{
//选出与指定飞机 航线有交叉的飞机 用于模拟飞行碰撞检测
for (int contrastId = 0; contrastId < aVecs.Length; contrastId++)
{
if (onlyPlaneId == contrastId) continue;//不和自己比较
// 判断两条轨迹 之间的最小距离
double distanceSquare = RecentlySquareOfLine(aVecs[onlyPlaneId], bVecs[onlyPlaneId], aVecs[contrastId], bVecs[contrastId]);//航线最小距离
if (distanceSquare < LineDistanceSquare)
{
double minDistanceSquare = MinDistanceSquareOfLine(aVecs[onlyPlaneId], bVecs[onlyPlaneId], aVecs[contrastId], bVecs[contrastId]);//按比例飞行最小间距
if (minDistanceSquare < SpaceBetweenSquare)
{
return true;//返回有碰撞
}
}
}
return false;//返回没有碰撞;
}
/// <summary>
/// 单机碰撞检测
/// </summary>
/// <param name="onlyPlaneId">飞机的id PS:id从0开始</param>
/// <param name="aVecs">飞机起始坐标集合</param>
/// <param name="bVecs">飞机终点坐标集合</param>
/// <returns>true:有碰撞 false:无碰撞</returns>
private static bool OnlyImitation(int onlyPlaneId, List<Vector3> aVecs, List<Vector3> bVecs)
{
//选出与指定飞机 航线有交叉的飞机 用于模拟飞行碰撞检测
for (int contrastId = 0; contrastId < aVecs.Count; contrastId++)
{
if (onlyPlaneId == contrastId) continue;//不和自己比较
// 判断两条轨迹 之间的最小距离
double distanceSquare = RecentlySquareOfLine(aVecs[onlyPlaneId], bVecs[onlyPlaneId], aVecs[contrastId], bVecs[contrastId]);//航线最小距离
if (distanceSquare < LineDistanceSquare)
{
double minDistanceSquare = MinDistanceSquareOfLine(aVecs[onlyPlaneId], bVecs[onlyPlaneId], aVecs[contrastId], bVecs[contrastId]);//按比例飞行最小间距
if (minDistanceSquare < SpaceBetweenSquare)
{
return true;//返回有碰撞
}
}
}
return false;//返回没有碰撞;
}
/// <summary>
/// 单机碰撞检测
/// </summary>
/// <param name="onlyPlaneId">飞机的id PS:id从0开始</param>
/// <param name="aVecs">飞机起始坐标集合</param>
/// <param name="bVecs">飞机终点坐标集合</param>
/// <returns>true:有碰撞 false:无碰撞</returns>
private static bool OnlyImitation(int onlyPlaneId, Vector3[] aVecs, List<Vector3> bVecs)
{
//选出与指定飞机 航线有交叉的飞机 用于模拟飞行碰撞检测
for (int contrastId = 0; contrastId < aVecs.Length; contrastId++)
{
if (onlyPlaneId == contrastId) continue;//不和自己比较
// 判断两条轨迹 之间的最小距离
double distanceSquare = RecentlySquareOfLine(aVecs[onlyPlaneId], bVecs[onlyPlaneId], aVecs[contrastId], bVecs[contrastId]);//航线最小距离
if (distanceSquare < LineDistanceSquare)
{
double minDistanceSquare = MinDistanceSquareOfLine(aVecs[onlyPlaneId], bVecs[onlyPlaneId], aVecs[contrastId], bVecs[contrastId]);//按比例飞行最小间距
if (minDistanceSquare < SpaceBetweenSquare)
{
return true;//返回有碰撞
}
}
}
return false;//返回没有碰撞;
}
/// <summary>
/// 单机碰撞检测
/// </summary>
/// <param name="onlyPlaneId">飞机的id PS:id从0开始</param>
/// <param name="aVecs">飞机起始坐标集合</param>
/// <param name="bVecs">飞机终点坐标集合</param>
/// <returns>true:有碰撞 false:无碰撞</returns>
private static bool OnlyImitation(int onlyPlaneId, List<Vector3> aVecs, Vector3[] bVecs)
{
//选出与指定飞机 航线有交叉的飞机 用于模拟飞行碰撞检测
for (int contrastId = 0; contrastId < aVecs.Count; contrastId++)
{
if (onlyPlaneId == contrastId) continue;//不和自己比较
// 判断两条轨迹 之间的最小距离
double distanceSquare = RecentlySquareOfLine(aVecs[onlyPlaneId], bVecs[onlyPlaneId], aVecs[contrastId], bVecs[contrastId]);//航线最小距离
if (distanceSquare < LineDistanceSquare)
{
double minDistanceSquare = MinDistanceSquareOfLine(aVecs[onlyPlaneId], bVecs[onlyPlaneId], aVecs[contrastId], bVecs[contrastId]);//按比例飞行最小间距
if (minDistanceSquare < SpaceBetweenSquare)
{
return true;//返回有碰撞
}
}
}
return false;//返回没有碰撞;
}
/// <summary>
/// 智能路径 规则找ab组共同最外圈的点 然后对应找a或b里面最近点 为一组匹配 最后进行碰撞交叉互换
/// </summary>
/// <param name="aVecs">起始点坐标组</param>
/// <param name="bVecs">目标点坐标组</param>
/// <param name="StrPrint">日志输出 回调函数</param>
/// <param name="isStaticSkip">静态跳过 true跳过即保持原地不动 false不跳过参与“最近和交换”计算</param>
/// <param name="staticThresholdSquare">静态距离判断 小于阈值判定为静态 注意是个平方值</param>
2024-01-05 21:22:17 +08:00
/// <param name="isSwap">交叉航线是否进行交换</param>
/// <param name="swapCount">交换次数</param>
/// <param name="crossingLimit">交叉线路数量上限 ps:超过这个数量则不进行交换</param>
/// <returns>新的目标点</returns>
2024-04-03 10:28:28 +08:00
public static Vector3[] ContactABOut(Vector3[] aVecs, Vector3[] bVecs, SomeCalculateWay StrPrint,bool isStaticSkip = false, double staticThresholdSquare = 25 , bool isSwap = true, int swapCount = 5, int crossingLimit = 6)
2024-01-05 21:22:17 +08:00
{
long t = DateTimeOffset.UtcNow.ToUnixTimeSeconds();
StrPrint("-------智能选择路径计算,开始-------");
int planeCou = aVecs.Length; // 飞机总数
List<int> staticAindex = new List<int>(); // a静态对应关系ab两图同一位置
List<int> staticBindex = new List<int>(); // b静态对应关系ab两图同一位置
Vector3[] new_aVecs = aVecs.ToArray(); //a图副本
Vector3[] new_bVecs = bVecs.ToArray(); //b图副本
///如果启动 静态航点跳过 把ab静态对应关系找出来 预存放到staticMatch
if (isStaticSkip)
{
for (int i = 0; i < planeCou; i++)
{
for (int j = 0; j < planeCou; j++)
{
if (GageLengthSquare(aVecs[i], bVecs[j]) <= staticThresholdSquare)
{
staticAindex.Add(i);
staticBindex.Add(j);
break;
}
}
}
//把静态的航点从列表里面清除
new_aVecs = RemoveElementsAtIndices(new_aVecs, staticAindex);
new_bVecs = RemoveElementsAtIndices(new_bVecs, staticBindex);
//刷新飞机总数 以下计算最近 和 交换航线时候 只有非静态飞机参与
planeCou = new_aVecs.Length;
}
2024-01-05 21:22:17 +08:00
List<int[]> match = new List<int[]>(); // ab对应关系
///记录a b集合索引
List<int> aIndex = new List<int>();
List<int> bIndex = new List<int>();
for (int k = 0; k < planeCou; k++)
{
aIndex.Add(k);
bIndex.Add(k);
}
/// 遍历找出 AB集合对应关系
for (int k = 0; k < planeCou; k++)
{
// 遍历每次刷新 剩下为未匹配总数
int remainCou = aIndex.Count;
// 遍历每次刷新 重心
List<Vector3> allVecs = new List<Vector3>();
for (int i = 0; i < remainCou; i++)
{
allVecs.Add(new_aVecs[aIndex[i]]);
allVecs.Add(new_bVecs[bIndex[i]]);
2024-01-05 21:22:17 +08:00
}
Vector3 centerVec = GetPosCenter(allVecs);//重心点
// 遍历所有ab点距离重心点的距离
double[] aLens = new double[remainCou];
double[] bLens = new double[remainCou];
for (int i = 0; i < remainCou; i++)
{
aLens[i] = GageLengthSquare(new_aVecs[aIndex[i]], centerVec);
bLens[i] = GageLengthSquare(new_bVecs[bIndex[i]], centerVec);
2024-01-05 21:22:17 +08:00
}
// 找出ab集合最外层坐标的下标 即离重心点最远的点
int aMaxIndex = GetIndexOfMaxOrMin(aLens); // a集合到重心点最长的距离 数组的下标
int bMaxIndex = GetIndexOfMaxOrMin(bLens); // b集合到重心点最长的距离 数组的下标
if (aLens[aMaxIndex] > bLens[bMaxIndex])//找出 最外层如果为A集合点 对应B集合最近点 的下标
{
double[] outAtoBLen = new double[remainCou];//最外层A点到 B集合所有点的距离
for (int i = 0; i < remainCou; i++)
{
outAtoBLen[i] = GageLengthSquare(new_aVecs[aIndex[aMaxIndex]], new_bVecs[bIndex[i]]);
2024-01-05 21:22:17 +08:00
}
int bMinIndex = GetIndexOfMaxOrMin(outAtoBLen, false);// 最短距离
match.Add(new int[] { aIndex[aMaxIndex], bIndex[bMinIndex] });// 映射到配对
aIndex.RemoveAt(aMaxIndex); // 删除已经配对的a集合 ID
bIndex.RemoveAt(bMinIndex); // 删除已经配对的b集合 ID
}
else//找出 最外层如果为B集合点 对应A集合最近点 的下标
{
double[] outBtoALen = new double[remainCou];//最外层B点到 A集合所有点的距离
for (int i = 0; i < remainCou; i++)
{
outBtoALen[i] = GageLengthSquare(new_aVecs[aIndex[i]], new_bVecs[bIndex[bMaxIndex]]);
2024-01-05 21:22:17 +08:00
}
int aMinIndex = GetIndexOfMaxOrMin(outBtoALen, false);// 最短距离
match.Add(new int[] { aIndex[aMinIndex], bIndex[bMaxIndex] });// 映射到配对
aIndex.RemoveAt(aMinIndex); // 删除已经配对的a集合 ID
bIndex.RemoveAt(bMaxIndex); // 删除已经配对的b集合 ID
}
}
Vector3[] re_bVecs = CreateNewBVecs(new_bVecs, match);// 按照映射 获取a 对应的 新的b集合
2024-01-05 21:22:17 +08:00
///交叉 交换
if (isSwap)
{
for (int i = 0; i < swapCount; i++)
2024-01-05 21:22:17 +08:00
{
List<int[]> planesCollision = AirImitation(new_aVecs, re_bVecs);// 获取碰撞组
List<List<int>> formatCollision = FindConnected(planesCollision);// 获取交叉序列 例如:[[0,2][0,3][3,4][5,6]] 结果[[0,2,3,4][5,6]]
List<List<int>> filteredCollision = formatCollision.Where(sublist => sublist.Count <= crossingLimit).ToList();// 过滤 只保留交叉数量小于等于crossingLimit的序列
if (filteredCollision.Count == 0) break;
///日志输出
string log = "";
foreach (List<int> item in filteredCollision)
2024-01-05 21:22:17 +08:00
{
log += "[";
foreach (int itemInt in item)
2024-01-05 21:22:17 +08:00
{
log += $"{itemInt},";
2024-01-05 21:22:17 +08:00
}
log += "]";
}
StrPrint($"共迭代{swapCount}次交换,第{i}次。共{filteredCollision.Count}组,交换组为:{log}。");
/// 遍历所有交叉组 分组做交换
int cou = 0;
foreach (List<int> swap_indices in filteredCollision)
{
cou++;
StrPrint($"进度:{cou}/{filteredCollision.Count}。交换组:[{string.Join(", ", swap_indices)}]。");
///交叉 生成所有排列
List<List<int>> all_permutations = Permutations(swap_indices);//所有排列组合
List<int> original = all_permutations[0];//原始排列
all_permutations.RemoveAt(0);//删掉第一个 既原始排列
/// 按所有的排列 互换航线 并检测出最佳的对应目标点
List<int> tempLen = new List<int>(); //记录最少碰撞的 排列
List<Vector3[]> tempNew_bVecsS = new List<Vector3[]>();//记录最少碰撞的 排列交换之后的目标坐标集
foreach (List<int> indices in all_permutations)
2024-01-05 21:22:17 +08:00
{
Vector3[] current_array = new Vector3[planeCou];
Array.Copy(re_bVecs, current_array, planeCou);//复制一个re_bVecs 副本
for (int k = 0; k < indices.Count; k++)
{
current_array[original[k]] = re_bVecs[indices[k]];
}
///把最少碰撞的排列 录入到数组
int collisionsCou = (AirImitation(new_aVecs, current_array)).Count;//此排列的碰撞次数
if (tempLen.Count == 0 || tempLen[0] == collisionsCou)//如果第一次添加 或者 碰撞次数等于最少碰撞
{
///录入数组
tempLen.Add(collisionsCou);
tempNew_bVecsS.Add(current_array);
}
else if (tempLen[0] > collisionsCou)
{
/// 如果最小值 大于 当前碰撞次数,清空之前记录
tempLen.Clear();
tempNew_bVecsS.Clear();
///录入数组
tempLen.Add(collisionsCou);
tempNew_bVecsS.Add(current_array);
}
2024-01-05 21:22:17 +08:00
}
re_bVecs = tempNew_bVecsS[GetRandomMinIndex(tempLen)];
2024-01-05 21:22:17 +08:00
}
}
}
///静态飞机 赋值回 返回航点组 ps:航点赋值的位置是对应的a组的ID位置 映射到b组的位置
if (isStaticSkip)
{
planeCou = aVecs.Length;
List<Vector3> re_bVecsCopy = new List<Vector3>(re_bVecs);
List<Vector3> re_bVecsList = new List<Vector3>();
for (int i = 0; i < planeCou; i++)
{
if (staticAindex.IndexOf(i) != -1)
{
re_bVecsList.Add(aVecs[i]);
}
else
{
re_bVecsList.Add(re_bVecsCopy[0]);
re_bVecsCopy.RemoveAt(0);
}
}
re_bVecs = re_bVecsList.ToArray();
}
2024-01-05 21:22:17 +08:00
t = DateTimeOffset.UtcNow.ToUnixTimeSeconds() - t;
StrPrint($"用时:{t}秒");
StrPrint($"-------智能选择路径计算,结束-------");
return re_bVecs;
2024-01-05 21:22:17 +08:00
}
/// <summary>
/// 智能错层 说明从A图上找出一个面最多点组成的共面以此面为错层基准做错层计算。PS:A图 B图 都可以为多个平面图形组成,但这些图形都必须平行
2024-01-05 21:22:17 +08:00
/// </summary>
/// <param name="aVecs">起始坐标集合</param>
/// <param name="bVecs">终点做标集合</param>
/// <param name="StrPrint">日志输出 回调函数</param>
/// <param name="layHight">错层层高</param>
/// <returns>返回一个二维向量坐标集合 middle[0]是第一个中间航点 middle[1]是第二个中间航点 返回空数组有几种情况 1.A图直接飞B图无碰撞 2.A图未能找到4个点以上的共面 3.有碰撞可能是AB图初始就过近 4.AB图并不平行</returns>
2024-04-03 10:28:28 +08:00
public static List<List<Vector3>> CollisionLayer(Vector3[] aVecs, Vector3[] bVecs,SomeCalculateWay StrPrint, double layHight = 300)
2024-01-05 21:22:17 +08:00
{
long t = DateTimeOffset.UtcNow.ToUnixTimeSeconds();
//StrPrint("-------错层,开始-------");
2024-01-05 21:22:17 +08:00
List<List<Vector3>> re = new List<List<Vector3>>();
///判断有没有碰撞 有碰撞继续 没有直接返回
List<int[]> planesCollision = AirImitation(aVecs, bVecs); //获取碰撞组
if (planesCollision.Count == 0)
{
StrPrint("执行成功:没有检测到碰撞,故不用添加中间航点");
//StrPrint($"-------错层结束-------");
2024-01-05 21:22:17 +08:00
return re;//直接返回
}
//获取飞机总数
int planeCou = aVecs.Length;
Vector3[] new_aVecs = aVecs.ToArray(); //a图副本
Vector3[] new_bVecs = bVecs.ToArray(); //b图副本
///把所有点压在 主面“共面”上
List<int> maxVecsOfCoplane = FindMaxPlaneIndices(aVecs);// 找出A图共面最多点的索引
StrPrint("提示:正在进行“共面”检测,需要一些时间请耐心等待。。。");
if (maxVecsOfCoplane.Count < 4) //a图至少要有4个点 共面
2024-01-05 21:22:17 +08:00
{
StrPrint("执行失败起始图案至少有4个点以上共面");
//StrPrint($"-------错层结束-------");
return re;
2024-01-05 21:22:17 +08:00
}
///共面上取三个点
Vector3 vec0 = new_aVecs[maxVecsOfCoplane[0]];
Vector3 vec1 = new_aVecs[maxVecsOfCoplane[1]];
Vector3 vec2 = new_aVecs[maxVecsOfCoplane[2]];
///遍历 把a图和b图点压到 “共面”上
for (int i = 0; i < planeCou; i++)
2024-01-05 21:22:17 +08:00
{
if (!(maxVecsOfCoplane.Contains(i))) //除去在共面内的面
2024-01-05 21:22:17 +08:00
{
new_aVecs[i] = CalculateIntersectionPoint(vec0, vec1, vec2, new_aVecs[i]); //压平到共面上
2024-01-05 21:22:17 +08:00
}
new_bVecs[i] = CalculateIntersectionPoint(vec0, vec1, vec2, new_bVecs[i]); //压平到共面上
2024-01-05 21:22:17 +08:00
}
///计算法线向量
2024-01-05 21:22:17 +08:00
Vector3 side1 = vec1 - vec0;
Vector3 side2 = vec2 - vec0;
Vector3 normal = CrossPro(side1, side2);
Vector3 normalScalar = normal.NormalizEd();//法线标量
///开始错层
2024-01-05 21:22:17 +08:00
for (int i = 0; i < planeCou; i++)
{
int shiftCou = 1; //记录循环次数 即层数
Vector3 aOrigin = new_aVecs[i]; //原点位置
Vector3 bOrigin = new_bVecs[i]; //原点位置
while (OnlyImitation(i, new_aVecs, new_bVecs))
2024-01-05 21:22:17 +08:00
{
Vector3 shiftVec = normalScalar * ((shiftCou + 1) / 2 * layHight);
if (shiftCou % 2 == 1)
{
new_aVecs[i] = aOrigin + shiftVec;
new_bVecs[i] = bOrigin + shiftVec;
2024-01-05 21:22:17 +08:00
}
else
{
new_aVecs[i] = aOrigin - shiftVec;
new_bVecs[i] = bOrigin - shiftVec;
2024-01-05 21:22:17 +08:00
}
shiftCou += 1;
}
}
///计算碰撞
planesCollision = AirImitation(aVecs, new_aVecs).Concat(AirImitation(new_aVecs, new_bVecs)).ToList(); //获取碰撞组
planesCollision = planesCollision.Concat(AirImitation(new_bVecs, bVecs)).ToList();
if (planesCollision.Count == 0)
{
re.Add(new_aVecs.ToList());
re.Add(new_bVecs.ToList());
StrPrint($"执行成功。");
}
else
{
StrPrint($"执行失败计算完成后检测有碰撞。可能原因1.起始图形或结束图形点阵距离有过近情况。2.起始图形和结束图形点阵所在面不平行");
}
2024-01-05 21:22:17 +08:00
t = DateTimeOffset.UtcNow.ToUnixTimeSeconds() - t;
StrPrint($"用时:{t}秒");
//StrPrint($"-------错层结束-------");
2024-01-05 21:22:17 +08:00
return re;
}
/// <summary>
/// 路径绕行
/// </summary>
/// <param name="aVecs">起始坐标集合</param>
/// <param name="bVecs">终点做标集合</param>
/// <param name="StrPrint">日志输出 回调函数</param>
2024-01-17 16:43:36 +08:00
/// <param name="GetVal">进度日志输出 回调函数</param>
/// <param name="cancellationToken">函数“取消执行”ps:new一个CancellationTokenSource类型 把实例.Token属性传进来函数外部用实例.Cancel()函数控制实参值(bool)</param>
/// <param name="isPass">out参数 返回true不碰撞程序直接返回 false有碰撞程序向下执行</param>
2024-01-17 16:43:36 +08:00
/// <param name="mappingId">飞机真实序号的映射关系</param>
2024-01-05 21:22:17 +08:00
/// <returns>返回一个二维数组 返回值长度0没有检测到碰撞或绕行失败 长度1为一个中间航点 长度为3为三个中间航点顺序(前中后)</returns>
public static List<List<Vector3>> ABypassB(Vector3[] aVecs, Vector3[] bVecs, SomeCalculateWay StrPrint, Schedule GetVal, CancellationToken cancellationToken, out bool isPass, List<int> mappingId = null)
2024-01-05 21:22:17 +08:00
{
isPass = false;
2024-01-05 21:22:17 +08:00
long t = DateTimeOffset.UtcNow.ToUnixTimeSeconds();
//StrPrint("-------3D绕行开始-------");
2024-01-05 21:22:17 +08:00
List<List<Vector3>> re = new List<List<Vector3>>();
///判断有没有碰撞 有碰撞继续 没有直接返回
List<int[]> planesCollision = AirImitation(aVecs, bVecs); //获取碰撞组
if (planesCollision.Count == 0)
{
StrPrint("执行成功:没有检测到碰撞,故不用添加中间航点。");
//StrPrint($"-------3D绕行结束-------");
isPass = true;
2024-01-05 21:22:17 +08:00
return re;//直接返回
}
///飞机总数
int planeCou = aVecs.Length;
///判断有没有给 映射的ID 没有就按顺序设置ID序号
if (mappingId == null)
{
mappingId = new List<int>();
for (int i = 1; i <= planeCou; i++)
{
mappingId.Add(i);
}
}
///碰撞数
int collisionCou;
2024-01-05 21:22:17 +08:00
///第一次绕行 中间1航点
StrPrint($"3D航线第一次计算开始。");
2024-01-05 21:22:17 +08:00
List<int> collisionGroup = TwoArrToArr(planesCollision); //整合数组
List<Vector3> middleVecs = new List<Vector3>(); //中心航点坐标组
for (int i = 0; i < planeCou; i++)
{
middleVecs.Add(SetMiddleVec(aVecs[i], bVecs[i])); //添加默认中间航点
}
collisionCou = collisionGroup.Count;
while (true)
2024-01-05 21:22:17 +08:00
{
if (cancellationToken.IsCancellationRequested)//外部法取消指令
{
StrPrint("取消3D航线操作。");
return null; // 退出函数
}
int progress = 0;//进度
2024-01-05 21:22:17 +08:00
foreach (int i in collisionGroup)//开始绕碰撞组
{
progress++;
GetVal(progress / collisionGroup.Count * 100);
List<Vector3> grv = GetRingVec(aVecs[i], bVecs[i], 0.5, 5, 4, 1500, 300);//中间可绕行航点列表
StrPrint($"3D航线第一次计算进度{progress}/{collisionGroup.Count},本次计算{grv.Count}次");
2024-01-05 21:22:17 +08:00
foreach (Vector3 v in grv)
{
middleVecs[i] = v;
if (!OnlyImitation(i, aVecs, middleVecs) && !(OnlyImitation(i, middleVecs, bVecs)))
{
break;
}
}
}
planesCollision = AirImitation(aVecs, middleVecs).Concat(AirImitation(middleVecs, bVecs)).ToList(); //获取碰撞组
collisionGroup = TwoArrToArr(planesCollision); //整合数组
//如果绕行成功 或者 绕行结果和上次一样没有变化甚碰撞变多 则都退出循环
if (collisionGroup.Count == 0 || collisionCou <= collisionGroup.Count)
{
collisionCou = collisionGroup.Count;
break;
}
collisionCou = collisionGroup.Count;
2024-01-05 21:22:17 +08:00
}
//没有碰撞 返回一个中间航点 并返回
if (collisionGroup.Count == 0)
{
StrPrint("执行成功:第一次计算即成功!");
2024-01-05 21:22:17 +08:00
t = DateTimeOffset.UtcNow.ToUnixTimeSeconds() - t;
StrPrint($"用时:{t}秒");
//StrPrint($"-------3D绕行结束-------");
2024-01-05 21:22:17 +08:00
re.Add(middleVecs);
return re;
}
else
{
string mappingOutput = string.Join(", ", collisionGroup.Select(index => $"{mappingId[index]}号")); // 构建映射关系字符串
StrPrint($"3D航线第一次计算之后仍有{collisionGroup.Count}架有碰撞:{mappingOutput}");
//StrPrint("第一次绕行未成功!");
2024-01-05 21:22:17 +08:00
}
///第二次绕行 两头 两航点
StrPrint($"3D航线第二次计算开始。");
2024-01-05 21:22:17 +08:00
bool isPassMark = false;
planesCollision = AirImitation(aVecs, bVecs); //获取碰撞组
collisionGroup = TwoArrToArr(planesCollision); //整合数组
List<Vector3> secondMiddleVecsOne = new List<Vector3>(); //中心航点坐标组1
List<Vector3> secondMiddleVecsTwo = new List<Vector3>(); //中心航点坐标组2
for (int i = 0; i < planeCou; i++)
{
secondMiddleVecsOne.Add(SetMiddleVec(aVecs[i], bVecs[i], 0.1)); //添加中间航点1
secondMiddleVecsTwo.Add(SetMiddleVec(aVecs[i], bVecs[i], 0.9)); //添加中间航点2
}
collisionCou = collisionGroup.Count;
while (true)
2024-01-05 21:22:17 +08:00
{
if (cancellationToken.IsCancellationRequested)//外部法取消指令
{
StrPrint("取消3D航线操作。");
return null; // 退出函数
}
2024-01-05 21:22:17 +08:00
int progress = 0;//进度
foreach (int i in collisionGroup)//开始绕碰撞组
{
progress++;
GetVal(progress / collisionGroup.Count * 100);
2024-01-05 21:22:17 +08:00
//StrPrint($"迭代{c}次{i}号绕行");
List<Vector3> sgrv1 = GetRingVec(aVecs[i], bVecs[i], 0, 30, 10, 600, 300);//中间可绕行航点列表
sgrv1.Insert(0, secondMiddleVecsOne[i]);
List<Vector3> sgrv2 = GetRingVec(aVecs[i], bVecs[i], 1, 30, 10, 600, 300);//中间可绕行航点列表
sgrv2.Insert(0, secondMiddleVecsTwo[i]);
StrPrint($"3D航线第二次计算进度{progress}/{collisionGroup.Count},本次绕行{sgrv1.Count * sgrv2.Count}次");
2024-01-05 21:22:17 +08:00
foreach (Vector3 v1 in sgrv1)
{
secondMiddleVecsOne[i] = v1;
foreach (Vector3 v2 in sgrv2)
{
secondMiddleVecsTwo[i] = v2;
if (!OnlyImitation(i, aVecs, secondMiddleVecsOne) && !OnlyImitation(i, secondMiddleVecsOne, secondMiddleVecsTwo) && !OnlyImitation(i, secondMiddleVecsTwo, bVecs))
{
isPassMark = true;
break;
}
isPassMark = false;
}
if (isPassMark)
{
break; //不撞则跳出 进行下一航线的绕行
}
}
}
planesCollision = AirImitation(aVecs, secondMiddleVecsOne).Concat(AirImitation(secondMiddleVecsOne, secondMiddleVecsTwo)).ToList(); //获取碰撞组
planesCollision = planesCollision.Concat(AirImitation(secondMiddleVecsTwo, bVecs)).ToList();
collisionGroup = TwoArrToArr(planesCollision); //整合数组
//如果绕行成功 或者 绕行结果和上次一样没有变化甚碰撞变多 则都退出循环
if (collisionGroup.Count == 0 || collisionCou <= collisionGroup.Count)
{
collisionCou = collisionGroup.Count;
break;
}
collisionCou = collisionGroup.Count;
2024-01-05 21:22:17 +08:00
}
//没有碰撞 返回两个中间航点 并返回
if (collisionGroup.Count == 0)
{
StrPrint("执行成功:第二次计算成功!");
2024-01-05 21:22:17 +08:00
t = DateTimeOffset.UtcNow.ToUnixTimeSeconds() - t;
StrPrint($"用时:{t}秒");
//StrPrint($"-------3D绕行结束-------");
2024-01-05 21:22:17 +08:00
re.Add(secondMiddleVecsOne);
re.Add(secondMiddleVecsTwo);
return re;
}
else
{
string mappingOutput = string.Join(", ", collisionGroup.Select(index => $"{mappingId[index]}号")); // 构建映射关系字符串
StrPrint($"3D航线第二次计算之后仍有{collisionGroup.Count}架有碰撞:{mappingOutput}");
//StrPrint("第二次绕行未成功!");
2024-01-05 21:22:17 +08:00
}
///第三次绕行 两头 两航点 中间一行点(实际添加两航点 但是0.6位置航点暂不启用留给第四次绕行) 沿用第二次绕行
StrPrint($"3D航线第二次计算开始。");
2024-01-05 21:22:17 +08:00
isPassMark = false;
List<Vector3> thirdMiddleVecs = new List<Vector3>(); //中心航点坐标组1
2024-01-05 21:22:17 +08:00
for (int i = 0; i < planeCou; i++)
{
thirdMiddleVecs.Add(SetMiddleVec(secondMiddleVecsOne[i], secondMiddleVecsTwo[i], 0.5)); //添加中间航点(保持二次绕行的两端航点 在两端航点中间添加)
}
while (true)
2024-01-05 21:22:17 +08:00
{
if (cancellationToken.IsCancellationRequested)//外部法取消指令
{
StrPrint("取消3D航线操作。");
return null; // 退出函数
}
2024-01-05 21:22:17 +08:00
int progress = 0;//进度
foreach (int i in collisionGroup)//开始绕碰撞组
{
GetVal(progress / collisionGroup.Count * 100);
2024-01-05 21:22:17 +08:00
progress++;
//StrPrint($"迭代{c}次{i}号绕行");
List<Vector3> sgrv1 = GetRingVec(aVecs[i], bVecs[i], 0, 100, 10, 600, 300);//中间可绕行航点列表
sgrv1.Insert(0, secondMiddleVecsOne[i]);
List<Vector3> sgrv2 = GetRingVec(aVecs[i], bVecs[i], 1, 100, 10, 600, 300);//中间可绕行航点列表
sgrv2.Insert(0, secondMiddleVecsTwo[i]);
List<Vector3> grv = GetRingVec(secondMiddleVecsOne[i], secondMiddleVecsTwo[i], 0.5, 80, 4, 1500, 300);//中间可绕行航点列表
StrPrint($"进度:{progress}/{collisionGroup.Count},本次绕行{sgrv1.Count * sgrv2.Count * grv.Count}次");
2024-01-05 21:22:17 +08:00
foreach (Vector3 vm in grv)
{
thirdMiddleVecs[i] = vm;
foreach (Vector3 v1 in sgrv1)
{
secondMiddleVecsOne[i] = v1;
foreach (Vector3 v2 in sgrv2)
{
secondMiddleVecsTwo[i] = v2;
if (!OnlyImitation(i, aVecs, secondMiddleVecsOne) && !OnlyImitation(i, secondMiddleVecsOne, thirdMiddleVecs) && !OnlyImitation(i, thirdMiddleVecs, secondMiddleVecsTwo) && !OnlyImitation(i, secondMiddleVecsTwo, bVecs))
2024-01-05 21:22:17 +08:00
{
isPassMark = true;
break;
}
isPassMark = false;
}
if (isPassMark)
{
break; //不撞则跳出 进行下一航线的绕行
}
}
if (isPassMark)
{
break; //不撞则跳出 进行下一航线的绕行
}
}
}
planesCollision = AirImitation(aVecs, secondMiddleVecsOne).Concat(AirImitation(secondMiddleVecsOne, thirdMiddleVecs)).ToList(); //获取碰撞组
planesCollision = planesCollision.Concat(AirImitation(thirdMiddleVecs, secondMiddleVecsTwo)).ToList();
planesCollision = planesCollision.Concat(AirImitation(secondMiddleVecsTwo, bVecs)).ToList();
collisionGroup = TwoArrToArr(planesCollision); //整合数组
//如果绕行成功 或者 绕行结果和上次一样没有变化甚碰撞变多 则都退出循环
if (collisionGroup.Count == 0 || collisionCou <= collisionGroup.Count)
{
collisionCou = collisionGroup.Count;
break;
}
collisionCou = collisionGroup.Count;
2024-01-05 21:22:17 +08:00
}
//没有碰撞 返回三个中间航点 并返回
if (collisionGroup.Count == 0)
{
StrPrint("执行成功:第三次计算成功!");
2024-01-05 21:22:17 +08:00
t = DateTimeOffset.UtcNow.ToUnixTimeSeconds() - t;
StrPrint($"用时:{t}秒");
re.Add(secondMiddleVecsOne);
re.Add(thirdMiddleVecs);
re.Add(secondMiddleVecsTwo);
return re;
}
else
{
string mappingOutput = string.Join(", ", collisionGroup.Select(index => $"{mappingId[index]}号")); // 构建映射关系字符串
StrPrint($"3D航线第三次计算之后仍有{collisionGroup.Count}架有碰撞:{mappingOutput}");
StrPrint("执行失败3D航线经过三次计算仍有碰撞。");
2024-01-05 21:22:17 +08:00
}
///end
t = DateTimeOffset.UtcNow.ToUnixTimeSeconds() - t;
StrPrint($"用时:{t}秒");
//StrPrint($"-------3D绕行结束-------");
2024-01-05 21:22:17 +08:00
return re;
}
/// <summary>
/// 在圆圈上 用固定弦长手拉手 分割点
/// </summary>
/// <param name="radius">大圆半径</param>
/// <param name="chordLength">固定弦长 ps:这个值决定绕行点一圈的密集成都值越小越密集</param>
/// <returns></returns>
private static List<Vector3> GetVecsOnCircle(double radius, double chordLength)
{
List<Vector3> vecs = new List<Vector3>();
// 计算圆的周长
double circumference = (double)(2 * Math.PI * radius);
// 计算弧上的点数
int numberOfPoints = (int)(circumference / chordLength);
// 计算每个点的弧度
double angleIncrement = (double)(2 * Math.PI / numberOfPoints);
// 生成点的坐标
for (int i = 0; i < numberOfPoints; i++)
{
double angle = i * angleIncrement;
double x = radius * (double)Math.Cos(angle);
double y = radius * (double)Math.Sin(angle);
double z = 0.0; // 如果是在平面上Z 可能是 0
vecs.Add(new Vector3(x, y, z));
}
return vecs;
}
/// <summary>
/// 获取a指向b的向量矩阵 ps:偏移次数 加1 会在终点前后往返偏移
/// </summary>
/// <param name="aVec">a向量</param>
/// <param name="bVec">b向量</param>
/// <param name="middleProportion">默认中点位置比例</param>
/// <param name="offCount">偏移次数 从0开始,每+1在中点前后往返偏移</param>
/// <param name="layHight">偏移层高</param>
/// <param name="direction">层排布方向 "retrun"前后堆叠 "forward"向前排列(如:起点向目标点方向) "backward"向后排列</param>
/// <returns>矩阵</returns>
private static Matrix GetBasisMatrix(Vector3 aVec, Vector3 bVec, double middleProportion, int offCount, double layHight, string direction)
2024-01-05 21:22:17 +08:00
{
/// 计算前向向量 k帽
Vector3 k_hat = (bVec - aVec).NormalizEd();
/// 计算右向量,使用 Vector3.UnitY 作为上向量 i帽
//Vector3 i_hat = CrossPro(Vector3.UnitY, k_hat).NormalizEd(); //固定方向i帽
Random random = new Random(RandomSeed);// 生成一个随机的单位向量
2024-01-05 21:22:17 +08:00
Vector3 randomVector = new Vector3((double)random.NextDouble(), (double)random.NextDouble(), (double)random.NextDouble());
Vector3 i_hat = CrossPro(k_hat, randomVector).NormalizEd();// 随机方向i帽
/// 计算上向量 j帽
Vector3 j_hat = CrossPro(k_hat, i_hat);
///计算 对应的偏移比例
double length = (bVec - aVec).GetMag();
double offShift = middleProportion; //偏移比例
2024-01-05 21:22:17 +08:00
if (direction == "retrun")
{
if (offCount % 2 == 1) //奇数
offShift = middleProportion + (offCount + 2) / 2 * layHight / length;
else //偶数
offShift = middleProportion - (offCount + 1) / 2 * layHight / length;
}
else if (direction == "forward")
{
offShift = middleProportion + offCount * layHight / length;
}
else if (direction == "backward")
2024-01-05 21:22:17 +08:00
{
offShift = middleProportion - offCount * layHight / length;
}
/// 计算偏向量
Vector3 off = aVec + (bVec - aVec) * offShift;
/// 构建矩阵
Matrix matrix = new Matrix
{
M11 = k_hat.X,
M12 = k_hat.Y,
M13 = k_hat.Z,
M21 = i_hat.X,
M22 = i_hat.Y,
M23 = i_hat.Z,
M31 = j_hat.X,
M32 = j_hat.Y,
M33 = j_hat.Z,
M41 = off.X,
M42 = off.Y,
M43 = off.Z
};
return matrix;
}
/// <summary>
/// a b点中间的绕行航点列表
/// </summary>
/// <param name="aVec">起点</param>
/// <param name="bVec">目标点</param>
/// <param name="middleProportion">中间航点位置比例</param>
/// <param name="transfer">绕行航点密度(值越小密度越大) ps:传递圈函数的弦长 向量矩阵函数的层高</param>
/// <param name="paunch">绕行航点范围(值越小范围越大 如:参数给4 圆盘的半径是a到b距离的1/4) ps:决定层的厚度 和 圈的直径 为 paunch/航线长度</param>
/// <param name="maxPaunchRadius">设定圆盘半径 的最大值 单位是厘米</param>
/// <param name="direction">层排布方向 "retrun"前后堆叠 "forward"向前排列(如:起点向目标点方向) "backward"向后排列</param>
2024-01-05 21:22:17 +08:00
/// <returns>绕行航点列表</returns>
public static List<Vector3> GetRingVec(Vector3 aVec, Vector3 bVec, double middleProportion, double transfer, double paunch, double maxPaunchRadius, double minPaunchRadius, string direction = "retrun")
2024-01-05 21:22:17 +08:00
{
List<Vector3> ringVec = new List<Vector3>(); //记录所有绕行中间航点坐标
/// 根据a到b的长度 算出中间绕行几圈
double discRadius = GageLength(aVec, bVec) / paunch;//圆盘半径
if (discRadius > maxPaunchRadius)
{
discRadius = maxPaunchRadius;//设定圆盘直径上限
}
if (discRadius < minPaunchRadius)
{
discRadius = minPaunchRadius;//设定圆盘直径下限
}
int ringCou = (int)Math.Ceiling(discRadius / transfer); //算层数和圈数 ps:层的厚度 和 圈的直径 为 paunch/航线长度
2024-01-05 21:22:17 +08:00
/// 不是单圈的话 设置层数跟圈数相等
int layCou = ringCou;
if (singleCircle) layCou = 1;
///遍历出所有绕行航点
for (int z = 0; z < layCou; z++) //迭代层
{
Matrix mat = GetBasisMatrix(aVec, bVec, middleProportion, z, transfer, direction); //根据圈数越多 偏移层数也越多 即每层矩阵off位置
for (int i = 0; i < ringCou; i++) //迭代圈
{
if (i != 0)
{
List<Vector3> tempCi = GetVecsOnCircle(i * transfer, transfer);
foreach (Vector3 vec in tempCi)
{
ringVec.Add(vec.Multiply(mat));//按照矩阵旋转之后 添加到中间航点列表
}
}
else
{
ringVec.Add(mat[3]); //第一次循环 并非圈 只在航线上 按层比例取点 即可
}
}
}
return ringVec;
}
/// <summary>
/// 按照矩阵 拉散图案
/// </summary>
/// <param name="aVecs">平面图案坐标组</param>
/// <param name="bVecs">回归矩阵坐标组</param>
/// <param name="strPrint">日志输出 回调函数</param>
2024-04-03 10:28:28 +08:00
/// <param name="pullingDistance">拉散层距</param>
2024-01-05 21:22:17 +08:00
/// <returns>拉散图案的坐标组</returns>
public static Vector3[] NormalPull(Vector3[] aVecs, Vector3[] bVecs, SomeCalculateWay StrPrint,double pullingDistance = 300)
2024-01-05 21:22:17 +08:00
{
Vector3[] new_aVecs = aVecs.ToArray(); //a图副本
Vector3[] new_bVecs = bVecs.ToArray(); //矩阵副本
int planeCou = new_aVecs.Length; //获取飞机总数
///判断a图是不是平面
if (!(planeCou == FindMaxPlaneIndices(aVecs).Count))
{
2024-01-24 16:12:57 +08:00
StrPrint("-------前图航点非平面图形,故不能做拉散图案操作-------");
return null;
}
2024-01-05 21:22:17 +08:00
///a图b图 中心
Vector3 aCenterPos = GetPosCenter(new_aVecs, false);
2024-01-05 21:22:17 +08:00
///判断bVec 矩阵的数量长宽
for (int i = 0; i < planeCou; i++)//把矩阵高度压平
{
new_bVecs[i] = new Vector3(new_bVecs[i].X, 0, new_bVecs[i].Z);
2024-01-05 21:22:17 +08:00
}
int row = 1;
for (int i = 0; i < planeCou - 2; i++)
2024-01-05 21:22:17 +08:00
{
if (!(IsVecsOnLine(new_bVecs[i], new_bVecs[i + 1], new_bVecs[i + 2])))
2024-01-05 21:22:17 +08:00
{
row = i + 2;//列
2024-01-05 21:22:17 +08:00
break;
}
}
int ran = (int)Math.Ceiling((double)planeCou / (double)row);//行
2024-01-17 20:25:54 +08:00
StrPrint($"{ran}行{row}列");
if (ran > 2)
{
for (int i = 0; i < ran - 2; i++)
{
2024-01-17 20:25:54 +08:00
if (!(IsVecsOnLine(new_bVecs[i * row], new_bVecs[(i + 1) * row], new_bVecs[(i + 2) * row])))
{
2024-01-17 20:25:54 +08:00
StrPrint("-------降落航点非常规矩阵,故不能做拉散图案操作-------");
return null;
}
}
}
2024-01-05 21:22:17 +08:00
///计算a图的法线标量
Vector3 side1 = new_aVecs[1] - new_aVecs[0];
Vector3 side2 = new_aVecs[2] - new_aVecs[0];
2024-01-05 21:22:17 +08:00
Vector3 normal = CrossPro(side1, side2);
Vector3 normalScalar = normal.NormalizEd();//法线标量
normalScalar.Y = 0;//高度上压平
///判断a图 法线朝向 和 矩阵“平行”方向 获取此方向层数 ps:用于a图的拉散
if (GageLength(normalScalar, new_bVecs[0]) < GageLength(normalScalar * -1, new_bVecs[0]))
2024-01-05 21:22:17 +08:00
{
normalScalar *= -1;//法线选择方向为 靠近矩阵1号机的方向 ps:由于取的三个点位置随机 按照右手定则 法线方向也随机
}
if (Math.Abs(AngleBetween(new_bVecs[row] - new_bVecs[0], normalScalar) - 90) < Math.Abs(AngleBetween(new_bVecs[1] - new_bVecs[0], normalScalar) - 90))
2024-01-05 21:22:17 +08:00
{
/// 图案“如平行于0 21 41..” 平行于列
for (int k = 0; k < row; k++)
{
for (int i = 0; i < ran; i++)
{
int cou = i * row + k;
2024-01-17 20:25:54 +08:00
if (cou >= planeCou) break;// 溢出跳出
2024-01-05 21:22:17 +08:00
///判断图在矩阵的左方 还是右方
if (GageLength(aCenterPos, new_bVecs[0]) > GageLength(aCenterPos, new_bVecs[row - 1]))
2024-01-05 21:22:17 +08:00
{
new_aVecs[cou] -= normalScalar * (row - k) * pullingDistance;//左方
2024-01-05 21:22:17 +08:00
}
else
{
new_aVecs[cou] += normalScalar * k * pullingDistance;//右方
2024-01-05 21:22:17 +08:00
}
}
}
///判断a图的中心点 是否在矩阵内部 在矩阵内部 做一个a b两组中心点对其 ps:相当于朝两边拉散
if (IsPointBetweenLines(new_bVecs[(int)Math.Ceiling(((double)row / 5)) - 1], new_bVecs[(int)Math.Ceiling(((double)row / 5)) - 1 + row], new_bVecs[row - ((int)Math.Ceiling(((double)row / 5)) - 1)], new_bVecs[(row - ((int)Math.Ceiling(((double)row / 5)) - 1)) + row], aCenterPos))
2024-01-05 21:22:17 +08:00
{
if (GageLength(new_aVecs[0], aVecs[0]) > GageLength(new_aVecs[planeCou - 1], aVecs[planeCou - 1]))//判断最大偏移量 是第一排 还是最后一排
2024-01-05 21:22:17 +08:00
{
Vector3 offPos = (new_aVecs[0] - aVecs[0]) * 0.5;//偏移量 的一半
for (int i = 0; i < planeCou; i++)//所有飞机重新计算偏移量 ps:向两侧拉开
{
new_aVecs[i] -= offPos;
}
}
else
{
Vector3 offPos = (new_aVecs[planeCou - 1] - aVecs[planeCou - 1]) * 0.5;//偏移量 的一半
for (int i = 0; i < planeCou; i++)//所有飞机重新计算偏移量 ps:向两侧拉开
{
new_aVecs[i] -= offPos;
}
2024-01-05 21:22:17 +08:00
}
}
}
else
{
/// 图案“如平行于 0-20” 平行于行
for (int k = 0; k < ran; k++)
{
for (int i = 0; i < row; i++)
{
int cou = k * row + i;
2024-01-17 20:25:54 +08:00
//StrPrint($"{cou}");
if (cou >= planeCou) break;// 溢出跳出
2024-01-05 21:22:17 +08:00
///判断图在矩阵的上方 还是下方
if (GageLength(aCenterPos, new_bVecs[0]) > GageLength(aCenterPos, new_bVecs[row * (ran - 1)]))
2024-01-05 21:22:17 +08:00
{
new_aVecs[cou] -= normalScalar * (ran - k) * pullingDistance;//上方
2024-01-05 21:22:17 +08:00
}
else
{
new_aVecs[cou] += normalScalar * k * pullingDistance;//下方
2024-01-05 21:22:17 +08:00
}
}
}
///判断a图的中心点 是否在矩阵内部 在矩阵内部 做一个a b两组中心点对其 ps:相当于朝两边拉散
if (IsPointBetweenLines(new_bVecs[(int)Math.Ceiling((double)ran / 5) * row - row], new_bVecs[(int)Math.Ceiling((double)ran / 5) * row - 1], new_bVecs[(ran - (int)Math.Ceiling((double)ran / 5)) * row], new_bVecs[(ran - (int)Math.Ceiling((double)ran / 5)) * row + row - 1], aCenterPos))
2024-01-05 21:22:17 +08:00
{
if (GageLength(new_aVecs[0], aVecs[0]) > GageLength(new_aVecs[planeCou - 1], aVecs[planeCou - 1]))//判断最大偏移量 是第一排 还是最后一排
2024-01-05 21:22:17 +08:00
{
Vector3 offPos = (new_aVecs[0] - aVecs[0]) * 0.5;//偏移量 的一半
for (int i = 0; i < planeCou; i++)//所有飞机重新计算偏移量 ps:向两侧拉开
{
new_aVecs[i] -= offPos;
}
}
else
{
Vector3 offPos = (new_aVecs[planeCou - 1] - aVecs[planeCou - 1]) * 0.5;//偏移量 的一半
for (int i = 0; i < planeCou; i++)//所有飞机重新计算偏移量 ps:向两侧拉开
{
new_aVecs[i] -= offPos;
}
2024-01-05 21:22:17 +08:00
}
}
}
return new_aVecs;
2024-01-05 21:22:17 +08:00
}
}
}